test: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 21: Line 21:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] || [[Item:Q1535|<math>\ln@@{1} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] || <math qid="Q1535">\ln@@{1} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
|-
| [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 80%;" inline>\binom{n}{k} = \frac{n!}{(n-k)!k!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 80%;" inline>\binom{n}{k} = \frac{n!}{(n-k)!k!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]

Revision as of 06:39, 28 June 2021


Notation
1.1 Special Notation
Areas
1.2 Elementary Algebra
1.3 Determinants
1.4 Calculus of One Variable
1.5 Calculus of Two or More Variables
1.6 Vectors and Vector-Valued Functions
1.7 Inequalities
1.8 Fourier Series
1.9 Calculus of a Complex Variable
1.10 Functions of a Complex Variable
1.11 Zeros of Polynomials
1.12 Continued Fractions
1.13 Differential Equations
1.14 Integral Transforms
1.15 Summability Methods
1.16 Distributions
1.17 Integral and Series Representations of the Dirac Delta



DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{1} = 0}
\ln@@{1} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
ln(1) = 0
Log[1] == 0
Successful Successful - Successful [Tested: 1]
4.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{1} = 0}
\ln@@{1} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
ln(1) = 0
Log[1] == 0
Successful Successful - Successful [Tested: 1]
1.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}}
\binom{n}{k} = \frac{n!}{(n-k)!k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))
Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]
Successful Successful - Successful [Tested: 9]
18.35.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta}}
\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \theta, \theta < \pi}
(pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n))/(factorial(n))*exp(I*n*theta)* hypergeom([- n , lambda + I*((a*cos(theta)+ b)/(sin(theta)))], [- n - lambda + 1 + I*((a*cos(theta)+ b)/(sin(theta)))], exp(- 2*I*theta)) = sum((pochhammer(lambda + I*((a*cos(theta)+ b)/(sin(theta))), ell))/(factorial(ell))*(pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n - ell))/(factorial(n - ell))*exp(I*(n - 2*ell)*theta), ell = 0..n)
Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n],(n)!]*Exp[I*n*\[Theta]]* HypergeometricPFQ[{- n , \[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, {- n - \[Lambda]+ 1 + I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, Exp[- 2*I*\[Theta]]] == Sum[Divide[Pochhammer[\[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), \[ScriptL]],(\[ScriptL])!]*Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n - \[ScriptL]],(n - \[ScriptL])!]*Exp[I*(n - 2*\[ScriptL])*\[Theta]], {\[ScriptL], 0, n}, GenerateConditions->None]
Error Successful - Successful [Tested: 300]
1.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{n!}{(n-k)!k!} = \binom{n}{n-k}}
\frac{n!}{(n-k)!k!} = \binom{n}{n-k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(factorial(n))/(factorial(n - k)*factorial(k)) = binomial(n,n - k)
Divide[(n)!,(n - k)!*(k)!] == Binomial[n,n - k]
Successful Successful - Successful [Tested: 9]
1.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}}
\frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
((- 1)^(k)* pochhammer(- z, k))/(factorial(k)) = (- 1)^(k)*binomial(k - z - 1,k)
Divide[(- 1)^(k)* Pochhammer[- z, k],(k)!] == (- 1)^(k)*Binomial[k - z - 1,k]
Successful Successful - Successful [Tested: 21]
1.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}}
\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(z + 1,k) = binomial(z,k)+binomial(z,k - 1)
Binomial[z + 1,k] == Binomial[z,k]+Binomial[z,k - 1]
Successful Successful - Successful [Tested: 21]
1.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}}
\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(z + k,k), k = 0..m) = binomial(z + m + 1,m)
Sum[Binomial[z + k,k], {k, 0, m}, GenerateConditions->None] == Binomial[z + m + 1,m]
Successful Successful - Successful [Tested: 21]
1.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)}
na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
n*a +(1)/(2)*n*(n - 1)*d = (1)/(2)*n*(a + ell)
n*a +Divide[1,2]*n*(n - 1)*d == Divide[1,2]*n*(a + \[ScriptL])
Skipped - no semantic math Skipped - no semantic math - -
1.2.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(r) = 0}
M(r) = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r)) = 0
((Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r)) == 0
Skipped - no semantic math Skipped - no semantic math - -
1.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(1) = A}
M(1) = A
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
M(1) = ((a[1]+ a[2]+ .. + a[n])/(n))
M[1] == (Divide[Subscript[a, 1]+ Subscript[a, 2]+ \[Ellipsis]+ Subscript[a, n],n])
Skipped - no semantic math Skipped - no semantic math - -
1.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(-1) = H}
M(-1) = H
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
M(- 1) = H
M[- 1] == H
Skipped - no semantic math Skipped - no semantic math - -
1.2.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{r\to 0}M(r) = G}
\lim_{r\to 0}M(r) = G
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r), r = 0) = ((a[1]*a[2] .. a[n])^(1/n))
Limit[(Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r), r -> 0, GenerateConditions->None] == ((Subscript[a, 1]*Subscript[a, 2] \[Ellipsis]Subscript[a, n])^(1/n))
Skipped - no semantic math Skipped - no semantic math - -