Algebraic and Analytic Methods - 1.8 Fourier Series

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.8.E16 n = - e - ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e - n 2 π 2 / ω cos ( 2 n π x ) ) superscript subscript 𝑛 superscript 𝑒 superscript 𝑛 𝑥 2 𝜔 𝜋 𝜔 1 2 superscript subscript 𝑛 1 superscript 𝑒 superscript 𝑛 2 superscript 𝜋 2 𝜔 2 𝑛 𝜋 𝑥 {\displaystyle{\displaystyle\sum_{n=-\infty}^{\infty}e^{-(n+x)^{2}\omega}={% \sqrt{\frac{\pi}{\omega}}\*\left(1+2\sum_{n=1}^{\infty}e^{-n^{2}\pi^{2}/\omega% }\cos\left(2n\pi x\right)\right)}}}
\sum_{n=-\infty}^{\infty}e^{-(n+x)^{2}\omega} = {\sqrt{\frac{\pi}{\omega}}\*\left(1+2\sum_{n=1}^{\infty}e^{-n^{2}\pi^{2}/\omega}\cos@{2n\pi x}\right)}
ω > 0 𝜔 0 {\displaystyle{\displaystyle\Re\omega>0}}
sum(exp(-(n + x)^(2)* omega), n = - infinity..infinity) = sqrt((Pi)/(omega))*(1 + 2*sum(exp(- (n)^(2)* (Pi)^(2)/omega)*cos(2*n*Pi*x), n = 1..infinity))
Sum[Exp[-(n + x)^(2)* \[Omega]], {n, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,\[Omega]]]*(1 + 2*Sum[Exp[- (n)^(2)* (Pi)^(2)/\[Omega]]*Cos[2*n*Pi*x], {n, 1, Infinity}, GenerateConditions->None])
Failure Successful Successful [Tested: 15] Successful [Tested: 15]