Algebraic and Analytic Methods - 1.10 Functions of a Complex Variable

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.10.E20 | ln ⁑ ( 1 + a n ⁒ ( z ) ) | ≀ M n 1 subscript π‘Ž 𝑛 𝑧 subscript 𝑀 𝑛 {\displaystyle{\displaystyle|\ln\left(1+a_{n}(z)\right)|\leq M_{n}}}
|\ln@{1+a_{n}(z)}| \leq M_{n}
n β‰₯ N 𝑛 𝑁 {\displaystyle{\displaystyle n\geq N}}
abs(ln(1 + a[n](z))) <= M[n]
Abs[Log[1 + Subscript[a, n][z]]] <= Subscript[M, n]
Failure Failure
Failed [126 / 300]
Result: .7588760888 <= -1.5
Test Values: {z = 1/2*3^(1/2)+1/2*I, M[n] = -1.5, a[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: .7588760888 <= -1.5
Test Values: {z = 1/2*3^(1/2)+1/2*I, M[n] = -1.5, a[n] = 1/2*3^(1/2)+1/2*I, n = 2}

Result: .7588760888 <= -1.5
Test Values: {z = 1/2*3^(1/2)+1/2*I, M[n] = -1.5, a[n] = 1/2*3^(1/2)+1/2*I, n = 3}

Result: 1.465287519 <= -1.5
Test Values: {z = 1/2*3^(1/2)+1/2*I, M[n] = -1.5, a[n] = -1/2+1/2*I*3^(1/2), n = 1}

... skip entries to safe data
Failed [246 / 300]
Result: LessEqual[0.7588760887069661, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[M, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: LessEqual[0.7588760887069661, Complex[0.8660254037844387, 0.49999999999999994]]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[M, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
1.10.E21 βˆ‘ n = 1 ∞ M n < ∞ subscript superscript 𝑛 1 subscript 𝑀 𝑛 {\displaystyle{\displaystyle\sum^{\infty}_{n=1}M_{n}<\infty}}
\sum^{\infty}_{n=1}M_{n} < \infty

sum(M[n](<)*infinity, n = 1..infinity)
Sum[Subscript[M, n][<]*Infinity, {n, 1, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.10.E22 P ⁒ ( z ) = ∏ n = 1 ∞ ( 1 - z z n ) ⁒ e z / z n 𝑃 𝑧 subscript superscript product 𝑛 1 1 𝑧 subscript 𝑧 𝑛 superscript 𝑒 𝑧 subscript 𝑧 𝑛 {\displaystyle{\displaystyle P(z)=\prod^{\infty}_{n=1}\left(1-\frac{z}{z_{n}}% \right)e^{z/z_{n}}}}
P(z) = \prod^{\infty}_{n=1}\left(1-\frac{z}{z_{n}}\right)e^{z/z_{n}}

P(z) = product((1 -(z)/(z[n]))*exp(z/z[n]), n = 1..infinity)
P[z] == Product[(1 -Divide[z,Subscript[z, n]])*Exp[z/Subscript[z, n]], {n, 1, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -