test: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(32 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{| class="wikitable sortable" | {{DISPLAYTITLE:Ey let me change the title god damn it}} | ||
<div style="-moz-column-count:2; column-count:2;"> | |||
; Notation : [[1.1|1.1 Special Notation]]<br> | |||
; Areas : [[1.2|1.2 Elementary Algebra]]<br>[[1.3|1.3 Determinants]]<br>[[1.4|1.4 Calculus of One Variable]]<br>[[1.5|1.5 Calculus of Two or More Variables]]<br>[[1.6|1.6 Vectors and Vector-Valued Functions]]<br>[[1.7|1.7 Inequalities]]<br>[[1.8|1.8 Fourier Series]]<br>[[1.9|1.9 Calculus of a Complex Variable]]<br>[[1.10|1.10 Functions of a Complex Variable]]<br>[[1.11|1.11 Zeros of Polynomials]]<br>[[1.12|1.12 Continued Fractions]]<br>[[1.13|1.13 Differential Equations]]<br>[[1.14|1.14 Integral Transforms]]<br>[[1.15|1.15 Summability Methods]]<br>[[1.16|1.16 Distributions]]<br>[[1.17|1.17 Integral and Series Representations of the Dirac Delta]]<br> | |||
<br> | |||
</div> | |||
<div style="width: 100%; height: 75vh; overflow: auto;"> | |||
{| class="wikitable sortable" style="margin: 0;" | |||
|- | |- | ||
! DLMF ! | ! scope="col" style="position: sticky; top: 0;" | DLMF | ||
! scope="col" style="position: sticky; top: 0;" | Formula | |||
! scope="col" style="position: sticky; top: 0;" | Constraints | |||
! scope="col" style="position: sticky; top: 0;" | Maple | |||
! scope="col" style="position: sticky; top: 0;" | Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] || [[Item:Q1535|<math>\ln@@{1} = 0</math>]] - Mit Item:QID<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |- | ||
| [https://dlmf.nist.gov/ | | [https://dlmf.nist.gov/4.4.E1 4.4.E1] || <math qid="Q1535">\ln@@{1} = 0</math> - Mit Math-QID<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/1. | | [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 80%;" inline>\binom{n}{k} = \frac{n!}{(n-k)!k!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.35.E4 18.35.E4] || [[Item:Q6043|<math>\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; white-space:break-spaces" inline>\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta}</syntaxhighlight> || <math>0 < \theta, \theta < \pi</math> || <syntaxhighlight lang=mathematica>(pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n))/(factorial(n))*exp(I*n*theta)* hypergeom([- n , lambda + I*((a*cos(theta)+ b)/(sin(theta)))], [- n - lambda + 1 + I*((a*cos(theta)+ b)/(sin(theta)))], exp(- 2*I*theta)) = sum((pochhammer(lambda + I*((a*cos(theta)+ b)/(sin(theta))), ell))/(factorial(ell))*(pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n - ell))/(factorial(n - ell))*exp(I*(n - 2*ell)*theta), ell = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n],(n)!]*Exp[I*n*\[Theta]]* HypergeometricPFQ[{- n , \[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, {- n - \[Lambda]+ 1 + I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, Exp[- 2*I*\[Theta]]] == Sum[Divide[Pochhammer[\[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), \[ScriptL]],(\[ScriptL])!]*Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n - \[ScriptL]],(n - \[ScriptL])!]*Exp[I*(n - 2*\[ScriptL])*\[Theta]], {\[ScriptL], 0, n}, GenerateConditions->None]</syntaxhighlight> || Error || Successful || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E1 1.2.E1] || [[Item:Q30|<math>\frac{n!}{(n-k)!k!} = \binom{n}{n-k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{n!}{(n-k)!k!} = \binom{n}{n-k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(factorial(n))/(factorial(n - k)*factorial(k)) = binomial(n,n - k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(n)!,(n - k)!*(k)!] == Binomial[n,n - k]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9] | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E6 1.2.E6] || [[Item:Q35|<math>\frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((- 1)^(k)* pochhammer(- z, k))/(factorial(k)) = (- 1)^(k)*binomial(k - z - 1,k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(- 1)^(k)* Pochhammer[- z, k],(k)!] == (- 1)^(k)*Binomial[k - z - 1,k]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E7 1.2.E7] || [[Item:Q36|<math>\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(z + 1,k) = binomial(z,k)+binomial(z,k - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[z + 1,k] == Binomial[z,k]+Binomial[z,k - 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E8 1.2.E8] || [[Item:Q37|<math>\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(z + k,k), k = 0..m) = binomial(z + m + 1,m)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[z + k,k], {k, 0, m}, GenerateConditions->None] == Binomial[z + m + 1,m]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- style="background: #ffeaa7;" | |||
| [https://dlmf.nist.gov/1.2.E10 1.2.E10] || [[Item:Q39|<math>na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>n*a +(1)/(2)*n*(n - 1)*d = (1)/(2)*n*(a + ell)</syntaxhighlight> || <syntaxhighlight lang=mathematica>n*a +Divide[1,2]*n*(n - 1)*d == Divide[1,2]*n*(a + \[ScriptL])</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E22 1.2.E22] || [[Item:Q51|<math>M(r) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>M(r) = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r)) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r)) == 0</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/1.2#Ex1 1.2#Ex1] || [[Item:Q54|<math>M(1) = A</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>M(1) = A</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>M(1) = ((a[1]+ a[2]+ .. + a[n])/(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>M[1] == (Divide[Subscript[a, 1]+ Subscript[a, 2]+ \[Ellipsis]+ Subscript[a, n],n])</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/1.2#Ex2 1.2#Ex2] || [[Item:Q55|<math>M(-1) = H</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>M(-1) = H</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>M(- 1) = H</syntaxhighlight> || <syntaxhighlight lang=mathematica>M[- 1] == H</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/1.2.E26 1.2.E26] || [[Item:Q56|<math>\lim_{r\to 0}M(r) = G</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{r\to 0}M(r) = G</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r), r = 0) = ((a[1]*a[2] .. a[n])^(1/n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r), r -> 0, GenerateConditions->None] == ((Subscript[a, 1]*Subscript[a, 2] \[Ellipsis]Subscript[a, n])^(1/n))</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|} | |} | ||
</div> |
Latest revision as of 06:40, 28 June 2021
- Notation
- 1.1 Special Notation
- Areas
- 1.2 Elementary Algebra
1.3 Determinants
1.4 Calculus of One Variable
1.5 Calculus of Two or More Variables
1.6 Vectors and Vector-Valued Functions
1.7 Inequalities
1.8 Fourier Series
1.9 Calculus of a Complex Variable
1.10 Functions of a Complex Variable
1.11 Zeros of Polynomials
1.12 Continued Fractions
1.13 Differential Equations
1.14 Integral Transforms
1.15 Summability Methods
1.16 Distributions
1.17 Integral and Series Representations of the Dirac Delta
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.4.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{1} = 0}
- Mit Item:QID\ln@@{1} = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | ln(1) = 0
|
Log[1] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{1} = 0}
- Mit Math-QID\ln@@{1} = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | ln(1) = 0
|
Log[1] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
1.2.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}}
\binom{n}{k} = \frac{n!}{(n-k)!k!} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))
|
Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]
|
Successful | Successful | - | Successful [Tested: 9] |
18.35.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta}}
\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n}}{n!}e^{\iunit n\theta}\*\genhyperF{2}{1}@@{-n,\lambda+\iunit\tau_{a,b}(\theta)}{-n-\lambda+1+\iunit\tau_{a,b}(\theta)}{e^{-2\iunit\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda+\iunit\tau_{a,b}(\theta)}{\ell}}{\ell!}\frac{\Pochhammersym{\lambda-\iunit\tau_{a,b}(\theta)}{n-\ell}}{(n-\ell)!}e^{\iunit(n-2\ell)\theta} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \theta, \theta < \pi} | (pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n))/(factorial(n))*exp(I*n*theta)* hypergeom([- n , lambda + I*((a*cos(theta)+ b)/(sin(theta)))], [- n - lambda + 1 + I*((a*cos(theta)+ b)/(sin(theta)))], exp(- 2*I*theta)) = sum((pochhammer(lambda + I*((a*cos(theta)+ b)/(sin(theta))), ell))/(factorial(ell))*(pochhammer(lambda - I*((a*cos(theta)+ b)/(sin(theta))), n - ell))/(factorial(n - ell))*exp(I*(n - 2*ell)*theta), ell = 0..n)
|
Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n],(n)!]*Exp[I*n*\[Theta]]* HypergeometricPFQ[{- n , \[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, {- n - \[Lambda]+ 1 + I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]])}, Exp[- 2*I*\[Theta]]] == Sum[Divide[Pochhammer[\[Lambda]+ I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), \[ScriptL]],(\[ScriptL])!]*Divide[Pochhammer[\[Lambda]- I*(Divide[a*Cos[\[Theta]]+ b,Sin[\[Theta]]]), n - \[ScriptL]],(n - \[ScriptL])!]*Exp[I*(n - 2*\[ScriptL])*\[Theta]], {\[ScriptL], 0, n}, GenerateConditions->None]
|
Error | Successful | - | Successful [Tested: 300] |
1.2.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{n!}{(n-k)!k!} = \binom{n}{n-k}}
\frac{n!}{(n-k)!k!} = \binom{n}{n-k} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (factorial(n))/(factorial(n - k)*factorial(k)) = binomial(n,n - k)
|
Divide[(n)!,(n - k)!*(k)!] == Binomial[n,n - k]
|
Successful | Successful | - | Successful [Tested: 9] |
1.2.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}}
\frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | ((- 1)^(k)* pochhammer(- z, k))/(factorial(k)) = (- 1)^(k)*binomial(k - z - 1,k)
|
Divide[(- 1)^(k)* Pochhammer[- z, k],(k)!] == (- 1)^(k)*Binomial[k - z - 1,k]
|
Successful | Successful | - | Successful [Tested: 21] |
1.2.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}}
\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | binomial(z + 1,k) = binomial(z,k)+binomial(z,k - 1)
|
Binomial[z + 1,k] == Binomial[z,k]+Binomial[z,k - 1]
|
Successful | Successful | - | Successful [Tested: 21] |
1.2.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}}
\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | sum(binomial(z + k,k), k = 0..m) = binomial(z + m + 1,m)
|
Sum[Binomial[z + k,k], {k, 0, m}, GenerateConditions->None] == Binomial[z + m + 1,m]
|
Successful | Successful | - | Successful [Tested: 21] |
1.2.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)}
na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | n*a +(1)/(2)*n*(n - 1)*d = (1)/(2)*n*(a + ell)
|
n*a +Divide[1,2]*n*(n - 1)*d == Divide[1,2]*n*(a + \[ScriptL])
|
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.2.E22 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(r) = 0}
M(r) = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | ((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r)) = 0
|
((Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r)) == 0
|
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.2#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(1) = A}
M(1) = A |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | M(1) = ((a[1]+ a[2]+ .. + a[n])/(n))
|
M[1] == (Divide[Subscript[a, 1]+ Subscript[a, 2]+ \[Ellipsis]+ Subscript[a, n],n])
|
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.2#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(-1) = H}
M(-1) = H |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | M(- 1) = H
|
M[- 1] == H
|
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.2.E26 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{r\to 0}M(r) = G}
\lim_{r\to 0}M(r) = G |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r), r = 0) = ((a[1]*a[2] .. a[n])^(1/n))
|
Limit[(Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r), r -> 0, GenerateConditions->None] == ((Subscript[a, 1]*Subscript[a, 2] \[Ellipsis]Subscript[a, n])^(1/n))
|
Skipped - no semantic math | Skipped - no semantic math | - | - |