Results of Bessel Functions II

From testwiki
Jump to navigation Jump to search
DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.22.E38 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}}
\int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) = (((a)^(2))/((b)^(2))+ (alpha[ell])^(2)- (nu)^(2))*((BesselJ(nu, alpha[ell]))^(2))/(2*(alpha[ell])^(2))*KroneckerDelta[ell, m]
Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] == (Divide[(a)^(2),(b)^(2)]+ (Subscript[\[Alpha], \[ScriptL]])^(2)- \[Nu]^(2))*Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*(Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m]
Failure Failure Error
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.22.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}}
\int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x)
Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}}
\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
10.22.E40 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}}
\int_{x}^{\infty}\frac{\BesselY{0}@{t}}{t}\diff{t} = -\frac{1}{\pi}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi}{6}+\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\*\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0}
int((BesselY(0, t))/(t), t = x..infinity) = -(1)/(Pi)*(ln((1)/(2)*x)+ gamma)^(2)+(Pi)/(6)+(2)/(Pi)*sum((- 1)^(k)*(Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[BesselY[0, t],t], {t, x, Infinity}, GenerateConditions->None] == -Divide[1,Pi]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[Pi,6]+Divide[2,Pi]*Sum[(- 1)^(k)*(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E41 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1}
\int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0}
int(BesselJ(nu, t), t = 0..infinity) = 1
Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 8]
10.22.E42 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}}
\int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi)
Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi]
Successful Aborted - Successful [Tested: 6]
10.22.E43 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}}
\int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2})} > 0}
int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]
Successful Successful - Successful [Tested: 10]
10.22.E44 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi}
\int_{0}^{\infty}t^{\mu}\BesselY{\nu}@{t}\diff{t} = \frac{2^{\mu}}{\pi}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}\sin@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\pi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2})} > 0}
int((t)^(mu)* BesselY(nu, t), t = 0..infinity) = ((2)^(mu))/(Pi)*GAMMA((1)/(2)*mu +(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*sin((1)/(2)*mu -(1)/(2)*nu)*Pi
Integrate[(t)^\[Mu]* BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2)^\[Mu],Pi]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Sin[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Pi
Error Aborted -
Failed [10 / 10]
Result: Complex[-0.5512405929316078, 0.2551977660147906]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.26217720344291356, -0.18052742798771904]
Test Values: {Rule[μ, 0], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E45 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}}
\int_{0}^{\infty}\frac{1-\BesselJ{0}@{t}}{t^{\mu}}\diff{t} = -\frac{\pi\sec@{\frac{1}{2}\mu\pi}}{2^{\mu}\EulerGamma^{2}@{\frac{1}{2}\mu+\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 < \realpart@@{\mu}, \realpart@@{\mu} < 3, \realpart@@{(0+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2})} > 0}
int((1 - BesselJ(0, t))/((t)^(mu)), t = 0..infinity) = -(Pi*sec((1)/(2)*mu*Pi))/((2)^(mu)* (GAMMA((1)/(2)*mu +(1)/(2)))^(2))
Integrate[Divide[1 - BesselJ[0, t],(t)^\[Mu]], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Pi*Sec[Divide[1,2]*\[Mu]*Pi],(2)^\[Mu]* (Gamma[Divide[1,2]*\[Mu]+Divide[1,2]])^(2)]
Error Aborted - Successful [Tested: 10]
10.22.E46 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}}
\int_{0}^{\infty}\frac{t^{\nu+1}\BesselJ{\nu}@{at}}{(t^{2}+b^{2})^{\mu+1}}\diff{t} = \frac{a^{\mu}b^{\nu-\mu}}{2^{\mu}\EulerGamma@{\mu+1}}\modBesselK{\nu-\mu}@{ab}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a > 0, \realpart@@{b} > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+1)} > 0}
int(((t)^(nu + 1)* BesselJ(nu, a*t))/(((t)^(2)+ (b)^(2))^(mu + 1)), t = 0..infinity) = ((a)^(mu)* (b)^(nu - mu))/((2)^(mu)* GAMMA(mu + 1))*BesselK(nu - mu, a*b)
Integrate[Divide[(t)^(\[Nu]+ 1)* BesselJ[\[Nu], a*t],((t)^(2)+ (b)^(2))^(\[Mu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* (b)^(\[Nu]- \[Mu]),(2)^\[Mu]* Gamma[\[Mu]+ 1]]*BesselK[\[Nu]- \[Mu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E47 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}}
\int_{0}^{\infty}\frac{t^{\nu}\BesselY{\nu}@{at}}{t^{2}+b^{2}}\diff{t} = -b^{\nu-1}\modBesselK{\nu}@{ab}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a > 0, \realpart@@{b} > 0, -\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{5}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
int(((t)^(nu)* BesselY(nu, a*t))/((t)^(2)+ (b)^(2)), t = 0..infinity) = - (b)^(nu - 1)* BesselK(nu, a*b)
Integrate[Divide[(t)^\[Nu]* BesselY[\[Nu], a*t],(t)^(2)+ (b)^(2)], {t, 0, Infinity}, GenerateConditions->None] == - (b)^(\[Nu]- 1)* BesselK[\[Nu], a*b]
Error Aborted - Skipped - Because timed out
10.22.E48 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}}
\int_{0}^{\infty}\BesselJ{\mu}@{x\cosh@@{\phi}}(\cosh@@{\phi})^{1-\mu}(\sinh@@{\phi})^{2\nu+1}\diff{\phi} = 2^{\nu}\EulerGamma@{\nu+1}x^{-\nu-1}\BesselJ{\mu-\nu-1}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x > 0, \realpart@@{\nu} > -1, \realpart@@{\mu} > 2\realpart@@{\nu}+\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu-1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0}
int(BesselJ(mu, x*cosh(phi))*(cosh(phi))^(1 - mu)*(sinh(phi))^(2*nu + 1), phi = 0..infinity) = (2)^(nu)* GAMMA(nu + 1)*(x)^(- nu - 1)* BesselJ(mu - nu - 1, x)
Integrate[BesselJ[\[Mu], x*Cosh[\[Phi]]]*(Cosh[\[Phi]])^(1 - \[Mu])*(Sinh[\[Phi]])^(2*\[Nu]+ 1), {\[Phi], 0, Infinity}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(x)^(- \[Nu]- 1)* BesselJ[\[Mu]- \[Nu]- 1, x]
Error Aborted - Skipped - Because timed out
10.22.E49 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(\tfrac{1}{2}b)^{\nu}}{a^{\mu+\nu}}\EulerGamma@{\mu+\nu}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{\mu+\nu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu} > 0, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0}
int((t)^(mu - 1)* exp(- a*t)*BesselJ(nu, b*t), t = 0..infinity) = (((1)/(2)*b)^(nu))/((a)^(mu + nu))*GAMMA(mu + nu)* hypergeom([(mu + nu)/(2), (mu + nu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b)^\[Nu],(a)^(\[Mu]+ \[Nu])]*Gamma[\[Mu]+ \[Nu]]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[\[Mu]+ \[Nu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
Error Aborted - Successful [Tested: 0]
10.22.E50 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}}
\int_{0}^{\infty}t^{\mu-1}e^{-at}\BesselY{\nu}@{bt}\diff{t} = \cot@{\nu\pi}\frac{(\tfrac{1}{2}b)^{\nu}\EulerGamma@{\mu+\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu+\nu)}}\*\hyperOlverF@{\frac{\mu+\nu}{2}}{\frac{1-\mu+\nu}{2}}{\nu+1}{\frac{b^{2}}{a^{2}+b^{2}}}-\csc@{\nu\pi}\frac{(\tfrac{1}{2}b)^{-\nu}\EulerGamma@{\mu-\nu}}{(a^{2}+b^{2})^{\frac{1}{2}(\mu-\nu)}}\*\hyperOlverF@{\frac{\mu-\nu}{2}}{\frac{1-\mu-\nu}{2}}{1-\nu}{\frac{b^{2}}{a^{2}+b^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\mu} > |\realpart@@{\nu}|, \realpart@{a+ ib} > 0, \realpart@{a- ib} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu-\nu)} > 0}
int((t)^(mu - 1)* exp(- a*t)*BesselY(nu, b*t), t = 0..infinity) = cot(nu*Pi)*(((1)/(2)*b)^(nu)* GAMMA(mu + nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu + nu)))* hypergeom([(mu + nu)/(2), (1 - mu + nu)/(2)], [nu + 1], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(nu + 1)- csc(nu*Pi)*(((1)/(2)*b)^(- nu)* GAMMA(mu - nu))/(((a)^(2)+ (b)^(2))^((1)/(2)*(mu - nu)))* hypergeom([(mu - nu)/(2), (1 - mu - nu)/(2)], [1 - nu], ((b)^(2))/((a)^(2)+ (b)^(2)))/GAMMA(1 - nu)
Integrate[(t)^(\[Mu]- 1)* Exp[- a*t]*BesselY[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Cot[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]+ \[Nu],2], Divide[1 - \[Mu]+ \[Nu],2], \[Nu]+ 1, Divide[(b)^(2),(a)^(2)+ (b)^(2)]]- Csc[\[Nu]*Pi]*Divide[(Divide[1,2]*b)^(- \[Nu])* Gamma[\[Mu]- \[Nu]],((a)^(2)+ (b)^(2))^(Divide[1,2]*(\[Mu]- \[Nu]))]* Hypergeometric2F1Regularized[Divide[\[Mu]- \[Nu],2], Divide[1 - \[Mu]- \[Nu],2], 1 - \[Nu], Divide[(b)^(2),(a)^(2)+ (b)^(2)]]
Error Aborted - Skipped - Because timed out
10.22.E51 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\nu+1}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{-\frac{b^{2}}{4p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(nu + 1), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(-((b)^(2))/(4*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Nu]+ 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[-Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [151 / 300]
Result: Complex[-0.06577510728447342, -0.5886826409090221]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0556301041786353, -0.2359104145157832]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E52 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\modBesselI{\ifrac{\nu}{2}}@{\frac{b^{2}}{8p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*BesselI((nu)/(2), ((b)^(2))/(8*(p)^(2)))
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[\[Nu],2], Divide[(b)^(2),8*(p)^(2)]]
Error Aborted - Skip - No test values generated
10.22.E53 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)}
\int_{0}^{\infty}\BesselY{2\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = -\frac{\sqrt{\pi}}{2p}\exp@{-\frac{b^{2}}{8p^{2}}}\left(\modBesselI{\nu}@{\frac{b^{2}}{8p^{2}}}\tan@{\nu\pi}+\frac{1}{\pi}\modBesselK{\nu}@{\frac{b^{2}}{8p^{2}}}\sec@{\nu\pi}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < \tfrac{1}{2}, \realpart@{p^{2}} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0}
int(BesselY(2*nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = -(sqrt(Pi))/(2*p)*exp(-((b)^(2))/(8*(p)^(2)))*(BesselI(nu, ((b)^(2))/(8*(p)^(2)))*tan(nu*Pi)+(1)/(Pi)*BesselK(nu, ((b)^(2))/(8*(p)^(2)))*sec(nu*Pi))
Integrate[BesselY[2*\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == -Divide[Sqrt[Pi],2*p]*Exp[-Divide[(b)^(2),8*(p)^(2)]]*(BesselI[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Tan[\[Nu]*Pi]+Divide[1,Pi]*BesselK[\[Nu], Divide[(b)^(2),8*(p)^(2)]]*Sec[\[Nu]*Pi])
Error Aborted - Skipped - Because timed out
10.22.E54 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}}
\int_{0}^{\infty}\BesselJ{\nu}@{bt}\exp@{-p^{2}t^{2}}t^{\mu-1}\diff{t} = \frac{(\tfrac{1}{2}b/p)^{\nu}\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu}}{2p^{\mu}}\exp@{-\frac{b^{2}}{4p^{2}}}\*\OlverconfhyperM@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\nu+1}{\frac{b^{2}}{4p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu} > 0, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu)} > 0}
int(BesselJ(nu, b*t)*exp(- (p)^(2)* (t)^(2))*(t)^(mu - 1), t = 0..infinity) = (((1)/(2)*b/p)^(nu)* GAMMA((1)/(2)*nu +(1)/(2)*mu))/(2*(p)^(mu))*exp(-((b)^(2))/(4*(p)^(2)))* KummerM((1)/(2)*nu -(1)/(2)*mu + 1, nu + 1, ((b)^(2))/(4*(p)^(2)))/GAMMA(nu + 1)
Integrate[BesselJ[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)]*(t)^(\[Mu]- 1), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*b/p)^\[Nu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]],2*(p)^\[Mu]]*Exp[-Divide[(b)^(2),4*(p)^(2)]]* Hypergeometric1F1Regularized[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, \[Nu]+ 1, Divide[(b)^(2),4*(p)^(2)]]
Error Aborted -
Failed [246 / 300]
Result: Complex[0.07541885663346475, -0.6281916024632631]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1002850405400357, -0.7734416454563844]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E55 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}}
\int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nu+\ell+m > -1, \realpart@@{((\nu+2\ell+1)+k+1)} > 0, \realpart@@{((\nu+2m+1)+k+1)} > 0}
int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1))
Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)]
Failure Failure Error
Failed [18 / 54]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[, 1], Rule[ν, Rational[-3, 2]]}

Result: Indeterminate
Test Values: {Rule[m, 2], Rule[, 2], Rule[ν, Rational[-3, 2]]}

... skip entries to safe data
10.22.E56 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{a^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}b^{\mu-\lambda+1}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2}}}\*\hyperOlverF@{\tfrac{1}{2}(\mu+\nu-\lambda+1)}{\tfrac{1}{2}(\mu-\nu-\lambda+1)}{\mu+1}{\frac{a^{2}}{b^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < a, a < b, \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\lambda+\frac{1}{2})} > 0}
int((BesselJ(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)* (b)^(mu - lambda + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)*lambda +(1)/(2)))* hypergeom([(1)/(2)*(mu + nu - lambda + 1), (1)/(2)*(mu - nu - lambda + 1)], [mu + 1], ((a)^(2))/((b)^(2)))/GAMMA(mu + 1)
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]* (b)^(\[Mu]- \[Lambda]+ 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]*\[Lambda]+Divide[1,2]]]* Hypergeometric2F1Regularized[Divide[1,2]*(\[Mu]+ \[Nu]- \[Lambda]+ 1), Divide[1,2]*(\[Mu]- \[Nu]- \[Lambda]+ 1), \[Mu]+ 1, Divide[(a)^(2),(b)^(2)]]
Error Aborted -
Failed [300 / 300]
Result: Complex[0.12507202091813296, -0.11002587193353452]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.017959797138118128, 0.3252875517547388]
Test Values: {Rule[a, 1.5], Rule[b, 2], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.22.E57 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}}
\int_{0}^{\infty}\frac{\BesselJ{\mu}@{at}\BesselJ{\nu}@{at}}{t^{\lambda}}\diff{t} = \frac{(\frac{1}{2}a)^{\lambda-1}\EulerGamma@{\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\lambda}}{2\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\mu+\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\lambda)} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}\nu+\frac{1}{2})} > 0}
int((BesselJ(mu, a*t)*BesselJ(nu, a*t))/((t)^(lambda)), t = 0..infinity) = (((1)/(2)*a)^(lambda - 1)* GAMMA((1)/(2)*mu +(1)/(2)*nu -(1)/(2)*lambda +(1)/(2))*GAMMA(lambda))/(2*GAMMA((1)/(2)*lambda +(1)/(2)*nu -(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*lambda +(1)/(2)*mu +(1)/(2)*nu +(1)/(2)))
Integrate[Divide[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], a*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Divide[1,2]*a)^(\[Lambda]- 1)* Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]]*Gamma[\[Lambda]],2*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]+Divide[1,2]]]
Error Aborted - Skipped - Because timed out
10.22.E58 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}}
\int_{0}^{\infty}\frac{\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{(ab)^{\nu}\EulerGamma@{\nu-\frac{1}{2}\lambda+\frac{1}{2}}}{2^{\lambda}(a^{2}+b^{2})^{\nu-\frac{1}{2}\lambda+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\lambda+\frac{1}{2}}}\hyperOlverF@{\frac{2\nu+1-\lambda}{4}}{\frac{2\nu+3-\lambda}{4}}{\nu+1}{\frac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a \neq b, \realpart@{2\nu+1} > \realpart@@{\lambda}, \realpart@@{\lambda} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-\frac{1}{2}\lambda+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\lambda+\frac{1}{2})} > 0}
int((BesselJ(nu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((a*b)^(nu)* GAMMA(nu -(1)/(2)*lambda +(1)/(2)))/((2)^(lambda)*((a)^(2)+ (b)^(2))^(nu -(1)/(2)*lambda +(1)/(2))* GAMMA((1)/(2)*lambda +(1)/(2)))*hypergeom([(2*nu + 1 - lambda)/(4), (2*nu + 3 - lambda)/(4)], [nu + 1], (4*(a)^(2)* (b)^(2))/(((a)^(2)+ (b)^(2))^(2)))/GAMMA(nu + 1)
Integrate[Divide[BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(a*b)^\[Nu]* Gamma[\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]],(2)^\[Lambda]*((a)^(2)+ (b)^(2))^(\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2])* Gamma[Divide[1,2]*\[Lambda]+Divide[1,2]]]*Hypergeometric2F1Regularized[Divide[2*\[Nu]+ 1 - \[Lambda],4], Divide[2*\[Nu]+ 3 - \[Lambda],4], \[Nu]+ 1, Divide[4*(a)^(2)* (b)^(2),((a)^(2)+ (b)^(2))^(2)]]
Error Aborted -
Failed [209 / 300]
Result: Complex[-0.13393539357334844, 0.1322614378889556]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.07230690300251369, -0.15068591568973605]
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.22.E66 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}}
\int_{0}^{\infty}e^{-at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}\diff{t} = \frac{1}{\pi(bc)^{\frac{1}{2}}}\*\assLegendreQ[]{\nu-\frac{1}{2}}@{\frac{a^{2}+b^{2}+c^{2}}{2bc}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0}
int(exp(- a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t), t = 0..infinity) = (1)/(Pi*(b*c)^((1)/(2)))* LegendreQ(nu -(1)/(2), ((a)^(2)+ (b)^(2)+ (c)^(2))/(2*b*c))
Integrate[Exp[- a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Pi*(b*c)^(Divide[1,2])]* LegendreQ[\[Nu]-Divide[1,2], 0, 3, Divide[(a)^(2)+ (b)^(2)+ (c)^(2),2*b*c]]
Error Aborted - Skipped - Because timed out
10.22.E67 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{\nu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{-\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}\left(\frac{ab}{2p^{2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(nu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(-((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[\[Nu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[-Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E68 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\BesselJ{0}@{at}\BesselY{0}@{at}\diff{t} = -\frac{1}{2\pi p^{2}}\exp@{-\frac{a^{2}}{2p^{2}}}\modBesselK{0}\left(\frac{a^{2}}{2p^{2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0}
int(t*exp(- (p)^(2)* (t)^(2))*BesselJ(0, a*t)*BesselY(0, a*t), t = 0..infinity) = -(1)/(2*Pi*(p)^(2))*exp(-((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselJ[0, a*t]*BesselY[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == -Divide[1,2*Pi*(p)^(2)]*Exp[-Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
Translation Error Translation Error - -
10.22.E70 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}}
\int_{0}^{\infty}\BesselY{\nu}@{at}\BesselJ{\nu+1}@{bt}\frac{t\diff{t}}{t^{2}-z^{2}} = \frac{1}{2}\pi\BesselJ{\nu+1}@{bz}\HankelH{1}{\nu}@{az}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a \geq b, b > 0, \realpart@@{\nu} > -\tfrac{3}{2}, \imagpart@@{z} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
int(BesselY(nu, a*t)*BesselJ(nu + 1, b*t)*(t)/((t)^(2)- (z)^(2)), t = 0..infinity) = (1)/(2)*Pi*BesselJ(nu + 1, b*z)*HankelH1(nu, a*z)
Integrate[BesselY[\[Nu], a*t]*BesselJ[\[Nu]+ 1, b*t]*Divide[t,(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ 1, b*z]*HankelH1[\[Nu], a*z]
Error Aborted - Skipped - Because timed out
10.22.E71 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}(\sin@@{\phi})^{\mu-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}a^{\mu}}\FerrersP[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}(\cos@@{\phi})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, |b-c| < a, a < b+c, \cos@@{\phi} = (b^{2}+c^{2}-a^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)*(sin(phi))^(mu -(1)/(2)))/((2*Pi)^((1)/(2))* (a)^(mu))*LegendreP(nu -(1)/(2), (1)/(2)- mu, cos(phi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)*(Sin[\[Phi]])^(\[Mu]-Divide[1,2]),(2*Pi)^(Divide[1,2])* (a)^\[Mu]]*LegendreP[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], Cos[\[Phi]]]
Translation Error Translation Error - -
10.22.E72 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}}
\int_{0}^{\infty}\BesselJ{\mu}@{at}\BesselJ{\nu}@{bt}\BesselJ{\nu}@{ct}t^{1-\mu}\diff{t} = \frac{(bc)^{\mu-1}\sin@{(\mu-\nu)\cpi}(\sinh@@{\chi})^{\mu-\frac{1}{2}}}{(\frac{1}{2}\pi^{3})^{\frac{1}{2}}a^{\mu}}\expe^{(\mu-\frac{1}{2})\iunit\cpi}\assLegendreQ[\frac{1}{2}-\mu]{\nu-\frac{1}{2}}@{\cosh@@{\chi}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -1, a > b+c, \cosh@@{\chi} = (a^{2}-b^{2}-c^{2})/(2bc), \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
int(BesselJ(mu, a*t)*BesselJ(nu, b*t)*BesselJ(nu, c*t)*(t)^(1 - mu), t = 0..infinity) = ((b*c)^(mu - 1)* sin((mu - nu)*Pi)*(sinh(chi))^(mu -(1)/(2)))/(((1)/(2)*(Pi)^(3))^((1)/(2))* (a)^(mu))*exp((mu -(1)/(2))*I*Pi)*LegendreQ(nu -(1)/(2), (1)/(2)- mu, cosh(chi))
Integrate[BesselJ[\[Mu], a*t]*BesselJ[\[Nu], b*t]*BesselJ[\[Nu], c*t]*(t)^(1 - \[Mu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(b*c)^(\[Mu]- 1)* Sin[(\[Mu]- \[Nu])*Pi]*(Sinh[\[Chi]])^(\[Mu]-Divide[1,2]),(Divide[1,2]*(Pi)^(3))^(Divide[1,2])* (a)^\[Mu]]*Exp[(\[Mu]-Divide[1,2])*I*Pi]*LegendreQ[\[Nu]-Divide[1,2], Divide[1,2]- \[Mu], 3, Cosh[\[Chi]]]
Error Aborted - Skip - No test values generated
10.23.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1}
\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0}
(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1
(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0}
\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n \geq 1, \realpart@@{(k+k+1)} > 0, \realpart@@{((2n-k)+k+1)} > 0, \realpart@@{((2n+k)+k+1)} > 0}
sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0
Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0
Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}}
\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(k+k+1)} > 0, \realpart@@{((n-k)+k+1)} > 0, \realpart@@{((n+k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0}
sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)
Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]
Aborted Failure Skipped - Because timed out
Failed [21 / 21]
Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}}
w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))
w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]
Failure Failure
Failed [300 / 300]
Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Complex[0.4375091763619045, 0.252596040745477]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.23#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u-v\cos@@{\alpha} = w\cos@@{\chi}}
u-v\cos@@{\alpha} = w\cos@@{\chi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
u - v*cos(alpha) = w*cos(chi)
u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.023973249213014358, -0.5554825514041751]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v\sin@@{\alpha} = w\sin@@{\chi}}
v\sin@@{\alpha} = w\sin@@{\chi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
v*sin(alpha) = w*sin(chi)
v*Sin[\[Alpha]] == w*Sin[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [294 / 300]
Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8740447527972026, 0.09051196331992012]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}}
e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu)} > 0}
exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)
Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out Skipped - Because timed out
10.23.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}}
(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+2k)+k+1)} > 0, \realpart@@{(\nu+k)} > 0}
((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)
(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 7]
10.23.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}}
\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0}
BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)
BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}}
\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0}
BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)
BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Manual Skip!
Failed [16 / 21]
Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.24.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0}
x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))*w = 0
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))*w == 0
Failure Failure
Failed [300 / 300]
Result: 1.948557159+2.125000000*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: .2165063513+1.125000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.9485571585149875, 2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.948557158514987, 0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}}
\BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\iunit \nu)+k+1)} > 0}
sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x))
Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.24#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}}
\BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0}
sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x))
Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}}
\EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+\iunit \nu)} > 0}
GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu])
Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]]
Failure Failure
Failed [300 / 300]
Result: .131682196e-1-.6479738907*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I}

Result: .2393622021-.2867640040*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.013168219691258531, -0.6479738909120968]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.23936220222535412, -0.28676400411697583]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}}
\BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x))
Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]]
Failure Failure
Failed [12 / 30]
Result: .1765981285-.1547836875*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -1.059084556+.9282601935*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.6353785354467336, 0.04153700144653363]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.2910880978413849, 0.681683596996288]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}}
\BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\iunit (-\nu))+k+1)} > 0, \realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit (-\nu)))+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0}
sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))
Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]
Failure Failure
Failed [12 / 30]
Result: -.6730010946+.5898680353*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.1980888923+.1736197856*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.16541121369118172, 0.7534126929509344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.3242468905843751, -0.9796849117084342]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)}
\Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\iunit \nu)+k+1)} > 0, \realpart@@{((-(\iunit \nu))+k+1)} > 0}
(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x)
Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x)
Failure Failure
Failed [12 / 30]
Result: -.3214564733-.7786157192*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.6431025084-4.765445687*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [30 / 30]
Result: Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.24.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{0}@{x} = \BesselY{0}@{x}}
\BesselYimag{0}@{x} = \BesselY{0}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((\iunit 0)+k+1)} > 0, \realpart@@{((-(\iunit 0))+k+1)} > 0}
sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x)
Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.25.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0}
z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))*w = 0
(z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))*w == 0
Failure Failure
Failed [220 / 300]
Result: -.6467477718e-9-2.000000002*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [264 / 300]
Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
10.25.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}}
\modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)
BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 70]
10.27.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-n}@{z} = \modBesselI{n}@{z}}
\modBesselI{-n}@{z} = \modBesselI{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0}
BesselI(- n, z) = BesselI(n, z)
BesselI[- n, z] == BesselI[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.27.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}}
\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)
BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}}
\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(- nu, z) = BesselK(nu, z)
BesselK[- \[Nu], z] == BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))
BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.27.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}}
\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))
BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}}
\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))
BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}}
\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}}
-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}}
\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))
BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}}
\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))
BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}}
\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z)
Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)}
\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}}
\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z)
Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z}
\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z
BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.29#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}'@{z} = \modBesselI{1}@{z}}
\modBesselI{0}'@{z} = \modBesselI{1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0}
diff( BesselI(0, z), z$(1) ) = BesselI(1, z)
D[BesselI[0, z], {z, 1}] == BesselI[1, z]
Successful Successful - Successful [Tested: 7]
10.29#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}'@{z} = -\modBesselK{1}@{z}}
\modBesselK{0}'@{z} = -\modBesselK{1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( BesselK(0, z), z$(1) ) = - BesselK(1, z)
D[BesselK[0, z], {z, 1}] == - BesselK[1, z]
Successful Successful - Successful [Tested: 7]
10.31.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}}
\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)
BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out
Failed [6 / 21]
Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}

Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.31.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi}
\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ ..
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.31.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}}
\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0}
BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)
BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}}
\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi)
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}}
\modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi)
BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}}
\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
(1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)
Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}}
\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
(1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi)
Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}}
\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0}
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1)
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Successful [Tested: 35]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}}
\frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{- zt}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\frac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0}
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(- z*t), t = - 1..1)
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[- z*t], {t, - 1, 1}, GenerateConditions->None]
Error Aborted Skip - symbolical successful subtest Successful [Tested: 35]
10.32.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}}
\modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi)
BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 21] Skipped - Because timed out
10.32.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}}
\modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity)
BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}}
\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(0, z) = -(1)/(Pi)*int(exp(+ z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}}
\modBesselK{0}@{z} = -\frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z(\sin@@{\theta})^{2}}\right)\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(0, z) = -(1)/(Pi)*int(exp(- z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..Pi)
BesselK[0, z] == -Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Pi}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}}
\modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x > 0}
BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity)
BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
10.32.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}}
\int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x > 0}
int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity)
Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
10.32.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}}
\modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < 1, x > 0}
BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity)
BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted Manual Skip! Skipped - Because timed out
10.32.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}}
\sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < 1, x > 0}
sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity)
Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}}
\modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0}
BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity)
BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}}
\frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{1}^{\infty}e^{-zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0}
((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1..infinity)
Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1, Infinity}, GenerateConditions->None]
Error Aborted Skip - symbolical successful subtest Skipped - Because timed out
10.32.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}}
\modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi}
BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity)
BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{4}\pi}
BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity)
BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 40]
10.32.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}}
\modBesselK{\nu}@{xz} = \frac{\EulerGamma@{\nu+\frac{1}{2}}(2z)^{\nu}}{\pi^{\frac{1}{2}}x^{\nu}}\int_{0}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}+z^{2})^{\nu+\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, x > 0, |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+\frac{1}{2})} > 0}
BesselK(nu, x*(x + y*I)) = (GAMMA(nu +(1)/(2))*(2*(x + y*I))^(nu))/((Pi)^((1)/(2))* (x)^(nu))*int((cos(x*t))/(((t)^(2)+(x + y*I)^(2))^(nu +(1)/(2))), t = 0..infinity)
BesselK[\[Nu], x*(x + y*I)] == Divide[Gamma[\[Nu]+Divide[1,2]]*(2*(x + y*I))^\[Nu],(Pi)^(Divide[1,2])* (x)^\[Nu]]*Integrate[Divide[Cos[x*t],((t)^(2)+(x + y*I)^(2))^(\[Nu]+Divide[1,2])], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}}
\modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi)
BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None]
Error Failure -
Failed [50 / 50]
Result: Complex[0.5303418993681409, 0.010453999760907294]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.7664848208906112, 0.1468422559210476]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.32.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}}
\modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c > \max(\realpart@@{\nu}, 0) < \frac{1}{2}\pi, |\phase@@{z}| < \frac{1}{2}\pi, \realpart@@{t} > 0, \realpart@@{(t-\nu)} > 0}
BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)
BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [300 / 300]
Result: .5663982443-.3181066824*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.434992817-2.759712160*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
10.32.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}}
\modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nu-\tfrac{1}{2}\notin\Integers < \tfrac{3}{2}\pi, |\phase@@{z}| < \tfrac{3}{2}\pi, \realpart@@{t} > 0, \realpart@@{(\tfrac{1}{2}-t-\nu)} > 0, \realpart@@{(\tfrac{1}{2}-t+\nu)} > 0}
BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity)
BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}}
\modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu+\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0}
BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..(1)/(2)*Pi)
BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.32.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}}
\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu+\nu}@{2x\sinh@@{t}}e^{(-\mu+\nu)t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0}
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu + nu, 2*x*sinh(t))*exp((- mu + nu)*t), t = 0..infinity)
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]+ \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}}
\modBesselI{\mu}@{x}\modBesselK{\nu}@{x} = \int_{0}^{\infty}\BesselJ{\mu-\nu}@{2x\sinh@@{t}}e^{(-\mu-\nu)t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\mu-\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -\tfrac{1}{2}, \realpart@{\mu+\nu} > -1, \realpart@{\mu-\nu} > -1, x > 0, \realpart@@{((\mu+\nu)+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0}
BesselI(mu, x)*BesselK(nu, x) = int(BesselJ(mu - nu, 2*x*sinh(t))*exp((- mu - nu)*t), t = 0..infinity)
BesselI[\[Mu], x]*BesselK[\[Nu], x] == Integrate[BesselJ[\[Mu]- \[Nu], 2*x*Sinh[t]]*Exp[(- \[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.32.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi}
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)*t), t = 0..infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi}
BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)*t), t = 0..infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.32.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}}
\modBesselK{\nu}@{z}\modBesselK{\nu}@{\zeta} = \frac{1}{2}\int_{0}^{\infty}\exp@{-\frac{t}{2}-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselK{\nu}\left(\frac{z\zeta}{t}\right)\frac{\diff{t}}{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \pi, |\phase@@{\zeta}| < \pi, |\phase@{z+\zeta}| < \tfrac{1}{4}\pi}
BesselK(nu, z)*BesselK(nu, zeta) = (1)/(2)*int(exp(-(t)/(2)-((z)^(2)+ (zeta)^(2))/(2*t))*BesselK(nu, (z*zeta)/(t))*(1)/(t), t = 0..infinity)
BesselK[\[Nu], z]*BesselK[\[Nu], \[Zeta]] == Divide[1,2]*Integrate[Exp[-Divide[t,2]-Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselK[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
10.32.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}}
\modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = \frac{1}{8\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{t+\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t+\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu+\frac{1}{2}\nu}\EulerGamma@{t-\frac{1}{2}\mu-\frac{1}{2}\nu}}{\EulerGamma@{2t}}(\tfrac{1}{2}z)^{-2t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c > \tfrac{1}{2}(|\realpart@@{\mu}|+|\realpart@@{\nu}|), |\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{(t+\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t+\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu+\frac{1}{2}\nu)} > 0, \realpart@@{(t-\frac{1}{2}\mu-\frac{1}{2}\nu)} > 0, \realpart@@{(2t)} > 0}
BesselK(mu, z)*BesselK(nu, z) = (1)/(8*Pi*I)*int((GAMMA(t +(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t +(1)/(2)*mu -(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu +(1)/(2)*nu)*GAMMA(t -(1)/(2)*mu -(1)/(2)*nu))/(GAMMA(2*t))*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity)
BesselK[\[Mu], z]*BesselK[\[Nu], z] == Divide[1,8*Pi*I]*Integrate[Divide[Gamma[t +Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t +Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]*Gamma[t -Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]],Gamma[2*t]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Error Aborted - Skip - No test values generated
10.34.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}}
\modBesselI{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\modBesselI{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselI(nu, z)
BesselI[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselI[\[Nu], z]
Failure Failure
Failed [132 / 210]
Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5147384726+.2724622562e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [120 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5147384728800724, 0.02724622519878004]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}}
\modBesselK{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\modBesselK{\nu}@{z}-\pi i\sin@{m\nu\pi}\csc@{\nu\pi}\modBesselI{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselK(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselK(nu, z)- Pi*I*sin(m*nu*Pi)*csc(nu*Pi)*BesselI(nu, z)
BesselK[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselK[\[Nu], z]- Pi*I*Sin[m*\[Nu]*Pi]*Csc[\[Nu]*Pi]*BesselI[\[Nu], z]
Failure Failure
Failed [170 / 210]
Result: 2.965939338+3.157233720*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -10.37113928-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [162 / 210]
Result: Complex[2.965939340334436, 3.157233721966529]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.371139260352992, -12.75980869099896]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)}
\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(+ e^{m\nu\pi i}\modBesselK{\nu}@{ze^{+\pi i}}- e^{(m- 1)\nu\pi i}\modBesselK{\nu}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(+ exp(m*nu*Pi*I)*BesselK(nu, z*exp(+ Pi*I))- exp((m - 1)*nu*Pi*I)*BesselK(nu, z))
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(+ Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Exp[(m - 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])
Failure Failure
Failed [152 / 210]
Result: -2.316975457-.8668337446*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5132395470-.3232131754e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [140 / 210]
Result: Complex[-2.3169754573845194, -0.8668337451474188]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5132395471581521, -0.03232131806579792]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)}
\modBesselI{\nu}@{ze^{m\pi i}} = (i/\pi)\left(- e^{m\nu\pi i}\modBesselK{\nu}@{ze^{-\pi i}}+ e^{(m+ 1)\nu\pi i}\modBesselK{\nu}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z*exp(m*Pi*I)) = (I/Pi)*(- exp(m*nu*Pi*I)*BesselK(nu, z*exp(- Pi*I))+ exp((m + 1)*nu*Pi*I)*BesselK(nu, z))
BesselI[\[Nu], z*Exp[m*Pi*I]] == (I/Pi)*(- Exp[m*\[Nu]*Pi*I]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Exp[(m + 1)*\[Nu]*Pi*I]*BesselK[\[Nu], z])
Failure Failure
Failed [190 / 210]
Result: -2.206479866-1.131319388*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .5147384726+.2724622561e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [190 / 210]
Result: Complex[-2.206479866313521, -1.1313193889480602]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5147384728800724, 0.027246225198780036]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)}
\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(+\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{+\pi i}}-\sin@{(m- 1)\nu\pi}\modBesselK{\nu}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(+ sin(m*nu*Pi)*BesselK(nu, z*exp(+ Pi*I))- sin((m - 1)*nu*Pi)*BesselK(nu, z))
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(+ Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[+ Pi*I]]- Sin[(m - 1)*\[Nu]*Pi]*BesselK[\[Nu], z])
Failure Failure
Failed [158 / 210]
Result: -2.723238516+7.278993081*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

Result: 29.12762958-25.06220737*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}

... skip entries to safe data
Failed [154 / 210]
Result: Complex[-2.7232385256388585, 7.278993075467058]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[29.127629620508102, -25.062207299552764]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)}
\modBesselK{\nu}@{ze^{m\pi i}} = \csc@{\nu\pi}\left(-\sin@{m\nu\pi}\modBesselK{\nu}@{ze^{-\pi i}}+\sin@{(m+ 1)\nu\pi}\modBesselK{\nu}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(nu, z*exp(m*Pi*I)) = csc(nu*Pi)*(- sin(m*nu*Pi)*BesselK(nu, z*exp(- Pi*I))+ sin((m + 1)*nu*Pi)*BesselK(nu, z))
BesselK[\[Nu], z*Exp[m*Pi*I]] == Csc[\[Nu]*Pi]*(- Sin[m*\[Nu]*Pi]*BesselK[\[Nu], z*Exp[- Pi*I]]+ Sin[(m + 1)*\[Nu]*Pi]*BesselK[\[Nu], z])
Failure Failure
Failed [170 / 210]
Result: 2.965939338+3.157233717*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -10.37113929-12.75980866*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [182 / 210]
Result: Complex[2.9659393403344363, 3.1572337219665294]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.371139260352981, -12.759808690998973]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}}
\modBesselK{n}@{ze^{m\pi i}} = (-1)^{mn}\modBesselK{n}@{z}+(-1)^{n(m-1)-1}m\pi i\modBesselI{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
BesselK(n, z*exp(m*Pi*I)) = (- 1)^(m*n)* BesselK(n, z)+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI(n, z)
BesselK[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)* BesselK[n, z]+(- 1)^(n*(m - 1)- 1)* m*Pi*I*BesselI[n, z]
Failure Failure
Failed [57 / 63]
Result: -1.971501919+2.706233555*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: -.7368261646+.3579119854*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [48 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}}
\modBesselK{n}@{ze^{m\pi i}} = +(-1)^{n(m-1)}m\modBesselK{n}@{ze^{+\pi i}}-(-1)^{nm}(m- 1)\modBesselK{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(n, z*exp(m*Pi*I)) = +(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(+ Pi*I))-(- 1)^(n*m)*(m - 1)*BesselK(n, z)
BesselK[n, z*Exp[m*Pi*I]] == +(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[+ Pi*I]]-(- 1)^(n*m)*(m - 1)*BesselK[n, z]
Failure Failure
Failed [51 / 63]
Result: -1.971501920+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 1}

Result: .7368261602-.357911988*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, n = 2}

... skip entries to safe data
Failed [42 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 2], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.736826162742255, -0.3579119863626685]
Test Values: {Rule[m, 2], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}}
\modBesselK{n}@{ze^{m\pi i}} = -(-1)^{n(m-1)}m\modBesselK{n}@{ze^{-\pi i}}+(-1)^{nm}(m+ 1)\modBesselK{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(n, z*exp(m*Pi*I)) = -(- 1)^(n*(m - 1))* m*BesselK(n, z*exp(- Pi*I))+(- 1)^(n*m)*(m + 1)*BesselK(n, z)
BesselK[n, z*Exp[m*Pi*I]] == -(- 1)^(n*(m - 1))* m*BesselK[n, z*Exp[- Pi*I]]+(- 1)^(n*m)*(m + 1)*BesselK[n, z]
Failure Failure
Failed [54 / 63]
Result: -1.971501919+2.706233556*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: -.7368261645+.357911985*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [63 / 63]
Result: Complex[-1.9715019183470535, 2.7062335550125516]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.736826162742255, 0.3579119863626685]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.34#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}}
\modBesselI{\nu}@{\conj{z}} = \conj{\modBesselI{\nu}@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, conjugate(z)) = conjugate(BesselI(nu, z))
BesselI[\[Nu], Conjugate[z]] == Conjugate[BesselI[\[Nu], z]]
Failure Failure Skipped - Because timed out
Failed [28 / 70]
Result: Complex[-0.1457476573229447, -0.7449450592023206]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.100244133383339, 1.2347828003590728]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.34#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}}
\modBesselK{\nu}@{\conj{z}} = \conj{\modBesselK{\nu}@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(nu, conjugate(z)) = conjugate(BesselK(nu, z))
BesselK[\[Nu], Conjugate[z]] == Conjugate[BesselK[\[Nu], z]]
Failure Failure
Failed [28 / 70]
Result: -.3322466664+.1347267497*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .8978926857-1.555608423*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [28 / 70]
Result: Complex[-0.332246666369582, 0.13472674975137633]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.23222824698313052, -0.12812607679285354]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}}
e^{\frac{1}{2}z(t+t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\modBesselI{m}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(m+k+1)} > 0}
exp((1)/(2)*z*(t + (t)^(- 1))) = sum((t)^(m)* BesselI(m, z), m = - infinity..infinity)
Exp[Divide[1,2]*z*(t + (t)^(- 1))] == Sum[(t)^(m)* BesselI[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.35.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}}
e^{z\cos@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\modBesselI{k}@{z}\cos@{k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0}
exp(z*cos(theta)) = BesselI(0, z)+ 2*sum(BesselI(k, z)*cos(k*theta), k = 1..infinity)
Exp[z*Cos[\[Theta]]] == BesselI[0, z]+ 2*Sum[BesselI[k, z]*Cos[k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.35.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}}
e^{z\sin@@{\theta}} = \modBesselI{0}@{z}+2\sum_{k=0}^{\infty}(-1)^{k}\modBesselI{2k+1}@{z}\sin@{(2k+1)\theta}+2\sum_{k=1}^{\infty}(-1)^{k}\modBesselI{2k}@{z}\cos@{2k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
exp(z*sin(theta)) = BesselI(0, z)+ 2*sum((- 1)^(k)* BesselI(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)+ 2*sum((- 1)^(k)* BesselI(2*k, z)*cos(2*k*theta), k = 1..infinity)
Exp[z*Sin[\[Theta]]] == BesselI[0, z]+ 2*Sum[(- 1)^(k)* BesselI[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselI[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Manual Skip! Skipped - Because timed out
10.35.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb}
1 = \modBesselI{0}@{z}-2\modBesselI{2}@{z}+2\modBesselI{4}@{z}-2\modBesselI{6}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
1 = BesselI(0, z)- 2*BesselI(2, z)+ 2*BesselI(4, z)- 2*BesselI(6, z)+ ..
1 == BesselI[0, z]- 2*BesselI[2, z]+ 2*BesselI[4, z]- 2*BesselI[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.440290591519046*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.924736610669727*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb}
e^{+ z} = \modBesselI{0}@{z}+ 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}+ 2\modBesselI{3}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(3+k+1)} > 0}
exp(+ z) = BesselI(0, z)+ 2*BesselI(1, z)+ 2*BesselI(2, z)+ 2*BesselI(3, z)+ ..
Exp[+ z] == BesselI[0, z]+ 2*BesselI[1, z]+ 2*BesselI[2, z]+ 2*BesselI[3, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-0.003384051289485407, 0.00475177611436145], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.002576303532707505, 0.004074841322498801], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.35.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb}
e^{- z} = \modBesselI{0}@{z}- 2\modBesselI{1}@{z}+2\modBesselI{2}@{z}- 2\modBesselI{3}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(3+k+1)} > 0}
exp(- z) = BesselI(0, z)- 2*BesselI(1, z)+ 2*BesselI(2, z)- 2*BesselI(3, z)+ ..
Exp[- z] == BesselI[0, z]- 2*BesselI[1, z]+ 2*BesselI[2, z]- 2*BesselI[3, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-0.0024389937896763803, 0.0042567403420422645], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.0020316532349716754, 0.004934003265463338], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.37.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|}
|\modBesselK{\nu}@{z}| < |\modBesselK{\mu}@{z}|
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
abs(BesselK(nu, z)) < abs(BesselK(mu, z))
Abs[BesselK[\[Nu], z]] < Abs[BesselK[\[Mu], z]]
Failure Failure
Failed [204 / 300]
Result: .6496143723 < .6496143723
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 3.110500858 < 3.110500858
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [184 / 300]
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
10.38.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}}
\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(k+1+\nu)} > 0}
diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}

... skip entries to safe data
10.38.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}}
\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(k+1+\nu)} > 0, \realpart@@{(k+1-\nu)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.38.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}}
\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z)
D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Failure - Successful [Tested: 7]
10.39#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}}
\modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\frac{1}{2})+k+1)} > 0}
BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z)
BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}}
\modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\frac{1}{2})+k+1)} > 0}
BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z)
BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}}
\modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK((1)/(2), z) = BesselK(-(1)/(2), z)
BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.39.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}}
\modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)
BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}}
\modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2)))
BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])]
Successful Failure - Successful [Tested: 7]
10.39.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)}
\modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2))))
BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])])
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.39.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z]
Failure Successful
Failed [7 / 56]
Result: -.800260207-.3396157390*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}

Result: -.4588638571-.5759587792*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 56]
Result: Complex[-0.8002602062152042, -0.3396157389151986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[-0.45886385712966904, -0.5759587792371148]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.39.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z)
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z]
Successful Successful Skip - symbolical successful subtest
Failed [7 / 56]
Result: Complex[0.8002602062152032, 0.3396157389151989]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[0.4588638571296689, 0.575958779237115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.39.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}}
\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z)
BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]
Successful Successful - Successful [Tested: 70]
10.39.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}}
\modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1))
BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]
Successful Successful - Successful [Tested: 7]
10.39.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}}
\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z)
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z]
Failure Failure Successful [Tested: 70] Successful [Tested: 70]
10.39.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2))
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)]
Error Failure - Error
10.40.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)}
\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\left(\sum_{k=0}^{\ell-1}\frac{a_{k}(\nu)}{z^{k}}+R_{\ell}(\nu,z)\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k \geq 1}
BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)*(sum((((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k)), k = 0..ell - 1)+ R[ell](nu , z))
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*(Sum[Divide[Divide[(4*\[Nu]^(2)- (1)^(2))*(4*\[Nu]^(2)- (3)^(2)) \[Ellipsis](4*\[Nu]^(2)-(2*k - 1)^(2)),(k)!*(8)^(k)],(z)^(k)], {k, 0, \[ScriptL]- 1}, GenerateConditions->None]+ Subscript[R, \[ScriptL]][\[Nu], z])
Failure Failure Error Error
10.41.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = (1+z^{2})^{-\frac{1}{2}}}
p = (1+z^{2})^{-\frac{1}{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
p = (1 + (z)^(2))^(-(1)/(2))
p == (1 + (z)^(2))^(-Divide[1,2])
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})}
U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))
Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})}
U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})}
U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})}
V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))
Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})}
V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})}
V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -
10.43.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}}
\int_{0}^{x}\frac{\modBesselI{0}@{t}-1}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0}
int((BesselI(0, t)- 1)/(t), t = 0..x) = (1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity)
Integrate[Divide[BesselI[0, t]- 1,t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[DirectedInfinity[-1], Times[-0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.43.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}}
\frac{1}{2}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\modBesselI{k}@{x} = \frac{2}{x}\sum_{k=0}^{\infty}(-1)^{k}(2k+3)(\digamma@{k+2}-\digamma@{1})\modBesselI{2k+3}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0}
(1)/(2)*sum((- 1)^(k - 1)*(Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselI(k, x), k = 1..infinity) = (2)/(x)*sum((- 1)^(k)*(2*k + 3)*(Psi(k + 2)- Psi(1))*BesselI(2*k + 3, x), k = 0..infinity)
Divide[1,2]*Sum[(- 1)^(k - 1)*Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselI[k, x], {k, 1, Infinity}, GenerateConditions->None] == Divide[2,x]*Sum[(- 1)^(k)*(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselI[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.75, k], BesselI[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.3333333333333333, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 1.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[Times[0.5, NSum[Times[Power[-1, Plus[-1, k]], Power[0.25, k], BesselI[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-4.0, NSum[Times[Power[-1, k], Plus[3, Times[2, k]], BesselI[Plus[3, Times[2, k]], 0.5], Plus[EulerGamma, PolyGamma[0, Plus[2, k]]]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.43.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}}
\int_{x}^{\infty}\frac{\modBesselK{0}@{t}}{t}\diff{t} = \frac{1}{2}\left(\ln@{\tfrac{1}{2}x}+\EulerConstant\right)^{2}+\frac{\pi^{2}}{24}-\sum_{k=1}^{\infty}\left(\digamma@{k+1}+\frac{1}{2k}-\ln@{\tfrac{1}{2}x}\right)\frac{(\tfrac{1}{2}x)^{2k}}{2k(k!)^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((BesselK(0, t))/(t), t = x..infinity) = (1)/(2)*(ln((1)/(2)*x)+ gamma)^(2)+((Pi)^(2))/(24)- sum((Psi(k + 1)+(1)/(2*k)- ln((1)/(2)*x))*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity)
Integrate[Divide[BesselK[0, t],t], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[Divide[1,2]*x]+ EulerGamma)^(2)+Divide[(Pi)^(2),24]- Sum[(PolyGamma[k + 1]+Divide[1,2*k]- Log[Divide[1,2]*x])*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
10.43.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}}
\int_{0}^{x}e^{-t}\modBesselI{n}@{t}\diff{t} = xe^{-x}(\modBesselI{0}@{x}+\modBesselI{1}@{x})+n(e^{-x}\modBesselI{0}@{x}-1)+2e^{-x}\sum_{k=1}^{n-1}(n-k)\modBesselI{k}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{(k+k+1)} > 0}
int(exp(- t)*BesselI(n, t), t = 0..x) = x*exp(- x)*(BesselI(0, x)+ BesselI(1, x))+ n*(exp(- x)*BesselI(0, x)- 1)+ 2*exp(- x)*sum((n - k)*BesselI(k, x), k = 1..n - 1)
Integrate[Exp[- t]*BesselI[n, t], {t, 0, x}, GenerateConditions->None] == x*Exp[- x]*(BesselI[0, x]+ BesselI[1, x])+ n*(Exp[- x]*BesselI[0, x]- 1)+ 2*Exp[- x]*Sum[(n - k)*BesselI[k, x], {k, 1, n - 1}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3]
Failed [2 / 3]
Result: Plus[1.0269197346695518, Times[-0.44626032029685964, Plus[-4.940169569318671, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[1.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 1.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[1.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 1.5]], Equal[[2], Plus[BesselI[0, 1.5], BesselI[1, 1.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 1.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 1.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 1.5]], [Plus[2, ]]], Times[, 1.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 1.5]], Equal[[3], Plus[Times[2, Power[1.5, -1], Plus[Times[1.5, BesselI[0, 1.5]], Times[-2, BesselI[1, 1.5]]]], BesselI[1, 1.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 1.5]}

Result: Plus[0.6643873281588137, Times[-1.2130613194252668, Plus[-3.19045011222397, Times[3.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[0.5, []], Times[Plus[-2, Times[-2, ], Times[-1, 0.5]], [Plus[1, ]]], Times[Plus[2, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[0.5, [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], BesselI[0, 0.5]], Equal[[2], Plus[BesselI[0, 0.5], BesselI[1, 0.5]]]}]][3.0]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], 0.5, []], Times[-1, Plus[2, ], Plus[Times[2, ], 0.5], [Plus[1, ]]], Times[, Plus[4, Times[2, ], Times[-1, 0.5]], [Plus[2, ]]], Times[, 0.5, [Plus[3, ]]]], 0], Equal[[1], 0], Equal[[2], BesselI[1, 0.5]], Equal[[3], Plus[Times[2, Power[0.5, -1], Plus[Times[0.5, BesselI[0, 0.5]], Times[-2, BesselI[1, 0.5]]]], BesselI[1, 0.5]]]}]][3.0]]]]], {Rule[n, 3], Rule[x, 0.5]}

10.43.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})}
\int_{0}^{x}e^{+ t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}-\modBesselI{\nu+1}@{x})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
int(exp(+ t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)- BesselI(nu + 1, x))
Integrate[Exp[+ t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]+ 1, x])
Failure Successful Successful [Tested: 15] Successful [Tested: 15]
10.43.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})}
\int_{0}^{x}e^{- t}t^{\nu}\modBesselI{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselI{\nu}@{x}+\modBesselI{\nu+1}@{x})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0}
int(exp(- t)*(t)^(nu)* BesselI(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselI(nu, x)+ BesselI(nu + 1, x))
Integrate[Exp[- t]*(t)^\[Nu]* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]+ 1, x])
Failure Successful Skipped - Because timed out Successful [Tested: 15]
10.43.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}}
\int_{0}^{x}e^{+ t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{+ x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}-\modBesselI{\nu-1}@{x})-\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nu \neq \tfrac{1}{2}, \realpart@@{(\nu)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu-1)+k+1)} > 0}
int(exp(+ t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(+ x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)- BesselI(nu - 1, x))-((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))
Integrate[Exp[+ t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[+ x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]- BesselI[\[Nu]- 1, x])-Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]
Failure Successful Manual Skip!
Failed [3 / 12]
Result: 0.39894228040143315
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}

Result: 0.39894228040143254
Test Values: {Rule[x, 0.5], Rule[ν, 1.5]}

... skip entries to safe data
10.43.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}}
\int_{0}^{x}e^{- t}t^{-\nu}\modBesselI{\nu}@{t}\diff{t} = -\frac{e^{- x}x^{-\nu+1}}{2\nu-1}(\modBesselI{\nu}@{x}+\modBesselI{\nu-1}@{x})+\frac{2^{-\nu+1}}{(2\nu-1)\EulerGamma@{\nu}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nu \neq \tfrac{1}{2}, \realpart@@{(\nu)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu-1)+k+1)} > 0}
int(exp(- t)*(t)^(- nu)* BesselI(nu, t), t = 0..x) = -(exp(- x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselI(nu, x)+ BesselI(nu - 1, x))+((2)^(- nu + 1))/((2*nu - 1)*GAMMA(nu))
Integrate[Exp[- t]*(t)^(- \[Nu])* BesselI[\[Nu], t], {t, 0, x}, GenerateConditions->None] == -Divide[Exp[- x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselI[\[Nu], x]+ BesselI[\[Nu]- 1, x])+Divide[(2)^(- \[Nu]+ 1),(2*\[Nu]- 1)*Gamma[\[Nu]]]
Failure Successful Manual Skip! Successful [Tested: 12]
10.43.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}}
\int_{0}^{x}e^{+ t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{+ x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}+\modBesselK{\nu+1}@{x})-\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+1)} > 0}
int(exp(+ t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(+ x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)+ BesselK(nu + 1, x))-((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)
Integrate[Exp[+ t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[+ x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]+ 1, x])-Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]
Failure Aborted Manual Skip!
Failed [9 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 1.5]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 0.5]}

... skip entries to safe data
10.43.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}}
\int_{0}^{x}e^{- t}t^{\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{- x}x^{\nu+1}}{2\nu+1}(\modBesselK{\nu}@{x}-\modBesselK{\nu+1}@{x})+\frac{2^{\nu}\EulerGamma@{\nu+1}}{2\nu+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+1)} > 0}
int(exp(- t)*(t)^(nu)* BesselK(nu, t), t = 0..x) = (exp(- x)*(x)^(nu + 1))/(2*nu + 1)*(BesselK(nu, x)- BesselK(nu + 1, x))+((2)^(nu)* GAMMA(nu + 1))/(2*nu + 1)
Integrate[Exp[- t]*(t)^\[Nu]* BesselK[\[Nu], t], {t, 0, x}, GenerateConditions->None] == Divide[Exp[- x]*(x)^(\[Nu]+ 1),2*\[Nu]+ 1]*(BesselK[\[Nu], x]- BesselK[\[Nu]+ 1, x])+Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1],2*\[Nu]+ 1]
Failure Successful Manual Skip!
Failed [3 / 15]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[ν, 2]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]}

... skip entries to safe data
10.43.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})}
\int_{x}^{\infty}e^{t}t^{-\nu}\modBesselK{\nu}@{t}\diff{t} = \frac{e^{x}x^{-\nu+1}}{2\nu-1}(\modBesselK{\nu}@{x}+\modBesselK{\nu-1}@{x})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > \tfrac{1}{2}}
int(exp(t)*(t)^(- nu)* BesselK(nu, t), t = x..infinity) = (exp(x)*(x)^(- nu + 1))/(2*nu - 1)*(BesselK(nu, x)+ BesselK(nu - 1, x))
Integrate[Exp[t]*(t)^(- \[Nu])* BesselK[\[Nu], t], {t, x, Infinity}, GenerateConditions->None] == Divide[Exp[x]*(x)^(- \[Nu]+ 1),2*\[Nu]- 1]*(BesselK[\[Nu], x]+ BesselK[\[Nu]- 1, x])
Failure Successful Manual Skip!
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, 2]}

Result: DirectedInfinity[]
Test Values: {Rule[x, 0.5], Rule[ν, 2]}

... skip entries to safe data
10.43.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}}
\int_{0}^{\infty}\modBesselK{\nu}@{t}\diff{t} = \tfrac{1}{2}\pi\sec@{\tfrac{1}{2}\pi\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < 1}
int(BesselK(nu, t), t = 0..infinity) = (1)/(2)*Pi*sec((1)/(2)*Pi*nu)
Integrate[BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Sec[Divide[1,2]*Pi*\[Nu]]
Successful Successful - Successful [Tested: 6]
10.43.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}}
\int_{0}^{\infty}t^{\mu-1}\modBesselK{\nu}@{t}\diff{t} = 2^{\mu-2}\EulerGamma@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}\EulerGamma@{\tfrac{1}{2}\mu+\tfrac{1}{2}\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < \realpart@@{\mu}, \realpart@@{(\tfrac{1}{2}\mu-\tfrac{1}{2}\nu)} > 0, \realpart@@{(\tfrac{1}{2}\mu+\tfrac{1}{2}\nu)} > 0}
int((t)^(mu - 1)* BesselK(nu, t), t = 0..infinity) = (2)^(mu - 2)* GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*mu +(1)/(2)*nu)
Integrate[(t)^(\[Mu]- 1)* BesselK[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(\[Mu]- 2)* Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Mu]+Divide[1,2]*\[Nu]]
Successful Successful - Successful [Tested: 18]
10.43.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}}
\int_{0}^{\infty}\cos@{at}\modBesselK{0}@{t}\diff{t} = \frac{\pi}{2(1+a^{2})^{\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\imagpart@@{a}| < 1}
int(cos(a*t)*BesselK(0, t), t = 0..infinity) = (Pi)/(2*(1 + (a)^(2))^((1)/(2)))
Integrate[Cos[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2*(1 + (a)^(2))^(Divide[1,2])]
Successful Aborted - Successful [Tested: 6]
10.43.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}}
\int_{0}^{\infty}\sin@{at}\modBesselK{0}@{t}\diff{t} = \frac{\asinh@@{a}}{(1+a^{2})^{\frac{1}{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\imagpart@@{a}| < 1}
int(sin(a*t)*BesselK(0, t), t = 0..infinity) = (arcsinh(a))/((1 + (a)^(2))^((1)/(2)))
Integrate[Sin[a*t]*BesselK[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[ArcSinh[a],(1 + (a)^(2))^(Divide[1,2])]
Failure Successful Successful [Tested: 0] Successful [Tested: 6]
10.43.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}}}
\int_{0}^{\infty}t^{\nu+1}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{b^{\nu}}{(2p^{2})^{\nu+1}}\exp@{\frac{b^{2}}{4p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0}
int((t)^(nu + 1)* BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = ((b)^(nu))/((2*(p)^(2))^(nu + 1))*exp(((b)^(2))/(4*(p)^(2)))
Integrate[(t)^(\[Nu]+ 1)* BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu],(2*(p)^(2))^(\[Nu]+ 1)]*Exp[Divide[(b)^(2),4*(p)^(2)]]
Error Aborted - Skip - No test values generated
10.43.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}}
\int_{0}^{\infty}\modBesselI{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2p}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselI{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\frac{1}{2}\nu)+k+1)} > 0}
int(BesselI(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(2*p)*exp(((b)^(2))/(8*(p)^(2)))*BesselI((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))
Integrate[BesselI[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*p]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselI[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]
Failure Aborted
Failed [228 / 300]
Result: -.7585567167+3.675115279*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}

Result: -.9489546609+2.381017603*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [152 / 300]
Result: Complex[-0.19039794459564638, -1.294097675814569]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.992047945390181, -4.249025046528451]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.43.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}}
\int_{0}^{\infty}\modBesselK{\nu}@{bt}\exp@{-p^{2}t^{2}}\diff{t} = \frac{\sqrt{\pi}}{4p}\sec@{\tfrac{1}{2}\pi\nu}\exp@{\frac{b^{2}}{8p^{2}}}\modBesselK{\frac{1}{2}\nu}@{\frac{b^{2}}{8p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\realpart@@{\nu}| < 1, \realpart@{p^{2}} > 0}
int(BesselK(nu, b*t)*exp(- (p)^(2)* (t)^(2)), t = 0..infinity) = (sqrt(Pi))/(4*p)*sec((1)/(2)*Pi*nu)*exp(((b)^(2))/(8*(p)^(2)))*BesselK((1)/(2)*nu, ((b)^(2))/(8*(p)^(2)))
Integrate[BesselK[\[Nu], b*t]*Exp[- (p)^(2)* (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*p]*Sec[Divide[1,2]*Pi*\[Nu]]*Exp[Divide[(b)^(2),8*(p)^(2)]]*BesselK[Divide[1,2]*\[Nu], Divide[(b)^(2),8*(p)^(2)]]
Failure Aborted
Failed [144 / 288]
Result: -.4056916296-1.844454275*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I}

Result: -.2830456904e-1-1.996429597*I
Test Values: {b = -3/2, nu = 1/2*3^(1/2)+1/2*I, p = 3/2}

... skip entries to safe data
Failed [144 / 288]
Result: Complex[0.40569163152223653, 1.8444542715605226]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4232355421098407, -0.8203643961026106]
Test Values: {Rule[b, -1.5], Rule[p, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.43.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}}
\int_{0}^{\infty}\frac{\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}}{t^{\lambda}}\diff{t} = \frac{b^{\nu}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2}}}{2^{\lambda+1}a^{\nu-\lambda+1}}\*\hyperOlverF@{\frac{\nu-\lambda+\mu+1}{2}}{\frac{\nu-\lambda-\mu+1}{2}}{\nu+1}{-\frac{b^{2}}{a^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\nu+1-\lambda} > |\realpart@@{\mu}|, \realpart@@{a} > |\imagpart@@{b}|, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\lambda+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\lambda-\frac{1}{2}\mu+\frac{1}{2})} > 0}
int((BesselK(mu, a*t)*BesselJ(nu, b*t))/((t)^(lambda)), t = 0..infinity) = ((b)^(nu)* GAMMA((1)/(2)*nu -(1)/(2)*lambda +(1)/(2)*mu +(1)/(2))*GAMMA((1)/(2)*nu -(1)/(2)*lambda -(1)/(2)*mu +(1)/(2)))/((2)^(lambda + 1)* (a)^(nu - lambda + 1))* hypergeom([(nu - lambda + mu + 1)/(2), (nu - lambda - mu + 1)/(2)], [nu + 1], -((b)^(2))/((a)^(2)))/GAMMA(nu + 1)
Integrate[Divide[BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t],(t)^\[Lambda]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(b)^\[Nu]* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]+Divide[1,2]*\[Mu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Lambda]-Divide[1,2]*\[Mu]+Divide[1,2]],(2)^(\[Lambda]+ 1)* (a)^(\[Nu]- \[Lambda]+ 1)]* Hypergeometric2F1Regularized[Divide[\[Nu]- \[Lambda]+ \[Mu]+ 1,2], Divide[\[Nu]- \[Lambda]- \[Mu]+ 1,2], \[Nu]+ 1, -Divide[(b)^(2),(a)^(2)]]
Error Aborted - Skip - No test values generated
10.43.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}}}
\int_{0}^{\infty}t^{\mu+\nu+1}\modBesselK{\mu}@{at}\BesselJ{\nu}@{bt}\diff{t} = \frac{(2a)^{\mu}(2b)^{\nu}\EulerGamma@{\mu+\nu+1}}{(a^{2}+b^{2})^{\mu+\nu+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{\nu+1} > |\realpart@@{\mu}|, \realpart@@{a} > |\imagpart@@{b}|, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+\nu+1)} > 0}
int((t)^(mu + nu + 1)* BesselK(mu, a*t)*BesselJ(nu, b*t), t = 0..infinity) = ((2*a)^(mu)*(2*b)^(nu)* GAMMA(mu + nu + 1))/(((a)^(2)+ (b)^(2))^(mu + nu + 1))
Integrate[(t)^(\[Mu]+ \[Nu]+ 1)* BesselK[\[Mu], a*t]*BesselJ[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(2*a)^\[Mu]*(2*b)^\[Nu]* Gamma[\[Mu]+ \[Nu]+ 1],((a)^(2)+ (b)^(2))^(\[Mu]+ \[Nu]+ 1)]
Error Aborted - Skip - No test values generated
10.43.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{\nu}@{at}\modBesselI{\nu}@{bt}\diff{t} = \frac{1}{2p^{2}}\exp@{\frac{a^{2}+b^{2}}{4p^{2}}}\modBesselI{\nu}@{\frac{ab}{2p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\nu} > -1, \realpart@{p^{2}} > 0, \realpart@@{(\nu+k+1)} > 0}
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(nu, a*t)*BesselI(nu, b*t), t = 0..infinity) = (1)/(2*(p)^(2))*exp(((a)^(2)+ (b)^(2))/(4*(p)^(2)))*BesselI(nu, (a*b)/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[\[Nu], a*t]*BesselI[\[Nu], b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*(p)^(2)]*Exp[Divide[(a)^(2)+ (b)^(2),4*(p)^(2)]]*BesselI[\[Nu], Divide[a*b,2*(p)^(2)]]
Error Aborted - Skipped - Because timed out
10.43.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}}
\int_{0}^{\infty}t\exp@{-p^{2}t^{2}}\modBesselI{0}@{at}\modBesselK{0}@{at}\diff{t} = \frac{1}{4p^{2}}\exp@{\frac{a^{2}}{2p^{2}}}\modBesselK{0}@{\frac{a^{2}}{2p^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@{p^{2}} > 0, \realpart@@{(0+k+1)} > 0}
int(t*exp(- (p)^(2)* (t)^(2))*BesselI(0, a*t)*BesselK(0, a*t), t = 0..infinity) = (1)/(4*(p)^(2))*exp(((a)^(2))/(2*(p)^(2)))*BesselK(0, ((a)^(2))/(2*(p)^(2)))
Integrate[t*Exp[- (p)^(2)* (t)^(2)]*BesselI[0, a*t]*BesselK[0, a*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4*(p)^(2)]*Exp[Divide[(a)^(2),2*(p)^(2)]]*BesselK[0, Divide[(a)^(2),2*(p)^(2)]]
Failure Aborted Skipped - Because timed out Successful [Tested: 48]
10.44#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}}
\modBesselI{\nu}@{z} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!}\BesselJ{\nu+k}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
BesselI(nu, z) = sum(((z)^(k))/(factorial(k))*BesselJ(nu + k, z), k = 0..infinity)
BesselI[\[Nu], z] == Sum[Divide[(z)^(k),(k)!]*BesselJ[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.44#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}}
\BesselJ{\nu}@{z} = \sum_{k=0}^{\infty}(-1)^{k}\frac{z^{k}}{k!}\modBesselI{\nu+k}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+k)+k+1)} > 0}
BesselJ(nu, z) = sum((- 1)^(k)*((z)^(k))/(factorial(k))*BesselI(nu + k, z), k = 0..infinity)
BesselJ[\[Nu], z] == Sum[(- 1)^(k)*Divide[(z)^(k),(k)!]*BesselI[\[Nu]+ k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [70 / 70]
Result: Plus[Complex[0.4358908643715884, -0.07192294931339177], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.0679098760861825, 0.09257666026367889], Times[-1.0, NSum[Times[Power[-1, k], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.44.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}}
\left(\tfrac{1}{2}z\right)^{\nu} = \sum_{k=0}^{\infty}(-1)^{k}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\modBesselI{\nu+2k}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0}
((1)/(2)*z)^(nu) = sum((- 1)^(k)*((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselI(nu + 2*k, z), k = 0..infinity)
(Divide[1,2]*z)^\[Nu] == Sum[(- 1)^(k)*Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselI[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip!
Failed [7 / 7]
Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1]}

Result: Plus[Complex[-0.2499999999999999, 0.43301270189221935], Times[-1.0, NSum[Times[Power[-1, k], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 1]}

... skip entries to safe data
10.44.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\frac{\modBesselI{2k}@{z}}{k}}
\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+2\sum_{k=1}^{\infty}\frac{\modBesselI{2k}@{z}}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+ 2*sum((BesselI(2*k, z))/(k), k = 1..infinity)
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+ 2*Sum[Divide[BesselI[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
10.44.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{z} = \frac{n!(\tfrac{1}{2}z)^{-n}}{2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}\modBesselI{k}@{z}}{k!(n-k)}+(-1)^{n-1}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\modBesselI{n}@{z}+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)\modBesselI{n+2k}@{z}}{k(n+k)}}
\modBesselK{n}@{z} = \frac{n!(\tfrac{1}{2}z)^{-n}}{2}\sum_{k=0}^{n-1}(-1)^{k}\frac{(\tfrac{1}{2}z)^{k}\modBesselI{k}@{z}}{k!(n-k)}+(-1)^{n-1}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\modBesselI{n}@{z}+(-1)^{n}\sum_{k=1}^{\infty}\frac{(n+2k)\modBesselI{n+2k}@{z}}{k(n+k)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0}
BesselK(n, z) = (factorial(n)*((1)/(2)*z)^(- n))/(2)*sum((- 1)^(k)*(((1)/(2)*z)^(k)* BesselI(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(- 1)^(n - 1)*(ln((1)/(2)*z)- Psi(n + 1))*BesselI(n, z)+(- 1)^(n)* sum(((n + 2*k)*BesselI(n + 2*k, z))/(k*(n + k)), k = 1..infinity)
BesselK[n, z] == Divide[(n)!*(Divide[1,2]*z)^(- n),2]*Sum[(- 1)^(k)*Divide[(Divide[1,2]*z)^(k)* BesselI[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n - 1)*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselI[n, z]+(- 1)^(n)* Sum[Divide[(n + 2*k)*BesselI[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip!
Failed [21 / 21]
Result: Plus[Complex[1.084080291505059, -0.3914662527648858], NSum[Times[Power[k, -1], Power[Plus[1, k], -1], Plus[1, Times[2, k]], BesselI[Plus[1, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]], Times[Complex[-0.8660254037844387, 0.49999999999999994], DifferenceRoot[Function[{, }, {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[-1, , Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.001928095904955185, 0.0030033056761246957], Times[-1.0, NSum[Times[Power[k, -1], Power[Plus[2, k], -1], Plus[2, Times[2, k]], BesselI[Plus[2, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data