Incomplete Gamma and Related Functions - 8.21 Generalized Sine and Cosine Integrals
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.21.E3 | \int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a} |
int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)
|
Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]
|
Successful | Aborted | - | Successful [Tested: 1] | |
8.21.E3 | \int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a} |
int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)
|
Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]
|
Successful | Aborted | - | Successful [Tested: 1] |