Incomplete Gamma and Related Functions - 8.21 Generalized Sine and Cosine Integrals

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.21.E3 0 t a - 1 e + i t d t = e + 1 2 π i a Γ ( a ) superscript subscript 0 superscript 𝑡 𝑎 1 superscript 𝑒 imaginary-unit 𝑡 𝑡 superscript 𝑒 1 2 𝜋 imaginary-unit 𝑎 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{a-1}e^{+\mathrm{i}t}\mathrm{d}% t=e^{+\frac{1}{2}\pi\mathrm{i}a}\Gamma\left(a\right)}}
\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
0 < a , a < 1 , a > 0 formulae-sequence 0 𝑎 formulae-sequence 𝑎 1 𝑎 0 {\displaystyle{\displaystyle 0<\Re a,\Re a<1,\Re a>0}}
int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]
8.21.E3 0 t a - 1 e - i t d t = e - 1 2 π i a Γ ( a ) superscript subscript 0 superscript 𝑡 𝑎 1 superscript 𝑒 imaginary-unit 𝑡 𝑡 superscript 𝑒 1 2 𝜋 imaginary-unit 𝑎 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{a-1}e^{-\mathrm{i}t}\mathrm{d}% t=e^{-\frac{1}{2}\pi\mathrm{i}a}\Gamma\left(a\right)}}
\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
0 < a , a < 1 , a > 0 formulae-sequence 0 𝑎 formulae-sequence 𝑎 1 𝑎 0 {\displaystyle{\displaystyle 0<\Re a,\Re a<1,\Re a>0}}
int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]