Exponential, Logarithmic, Sine, and Cosine Integrals - 6.6 Power Series

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.6.E1 Ei ( x ) = γ + ln x + n = 1 x n n ! n exponential-integral-Ei 𝑥 𝑥 superscript subscript 𝑛 1 superscript 𝑥 𝑛 𝑛 𝑛 {\displaystyle{\displaystyle\mathrm{Ei}\left(x\right)=\gamma+\ln x+\sum_{n=1}^% {\infty}\frac{x^{n}}{n!\thinspace n}}}
\expintEi@{x} = \EulerConstant+\ln@@{x}+\sum_{n=1}^{\infty}\frac{x^{n}}{n!\thinspace n}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
Error
ExpIntegralEi[x] == EulerGamma + Log[x]+ Sum[Divide[(x)^(n),(n)!*n], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 3]
6.6.E2 E 1 ( z ) = - γ - ln z - n = 1 ( - 1 ) n z n n ! n exponential-integral 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑧 𝑛 𝑛 𝑛 {\displaystyle{\displaystyle E_{1}\left(z\right)=-\gamma-\ln z-\sum_{n=1}^{% \infty}\frac{(-1)^{n}z^{n}}{n!\thinspace n}}}
\expintE@{z} = -\EulerConstant-\ln@@{z}-\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{n}}{n!\thinspace n}

Ei(z) = - gamma - ln(z)- sum(((- 1)^(n)* (z)^(n))/(factorial(n)*n), n = 1..infinity)
ExpIntegralE[1, z] == - EulerGamma - Log[z]- Sum[Divide[(- 1)^(n)* (z)^(n),(n)!*n], {n, 1, Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
6.6.E3 E 1 ( z ) = - ln z + e - z n = 0 z n n ! ψ ( n + 1 ) exponential-integral 𝑧 𝑧 superscript 𝑒 𝑧 superscript subscript 𝑛 0 superscript 𝑧 𝑛 𝑛 digamma 𝑛 1 {\displaystyle{\displaystyle E_{1}\left(z\right)=-\ln z+e^{-z}\sum_{n=0}^{% \infty}\frac{z^{n}}{n!}\psi\left(n+1\right)}}
\expintE@{z} = -\ln@@{z}+e^{-z}\sum_{n=0}^{\infty}\frac{z^{n}}{n!}\digamma@{n+1}

Ei(z) = - ln(z)+ exp(- z)*sum(((z)^(n))/(factorial(n))*Psi(n + 1), n = 0..infinity)
ExpIntegralE[1, z] == - Log[z]+ Exp[- z]*Sum[Divide[(z)^(n),(n)!]*PolyGamma[n + 1], {n, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247031*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744987+3.773814376*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
6.6.E4 Ein ( z ) = n = 1 ( - 1 ) n - 1 z n n ! n complementary-exponential-integral 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 𝑧 𝑛 𝑛 𝑛 {\displaystyle{\displaystyle\mathrm{Ein}\left(z\right)=\sum_{n=1}^{\infty}% \frac{(-1)^{n-1}z^{n}}{n!\thinspace n}}}
\expintEin@{z} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}z^{n}}{n!\thinspace n}

Error
ExpIntegralE[1, z] + Ln[z] + EulerGamma == Sum[Divide[(- 1)^(n - 1)* (z)^(n),(n)!*n], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, -0.5235987755982988], Ln[Complex[0.8660254037844387, 0.49999999999999994]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.6.E5 Si ( z ) = n = 0 ( - 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) sine-integral 𝑧 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑧 2 𝑛 1 2 𝑛 1 2 𝑛 1 {\displaystyle{\displaystyle\mathrm{Si}\left(z\right)=\sum_{n=0}^{\infty}\frac% {(-1)^{n}z^{2n+1}}{(2n+1)!(2n+1)}}}
\sinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{(2n+1)!(2n+1)}

Si(z) = sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(2*n + 1)*(2*n + 1)), n = 0..infinity)
SinIntegral[z] == Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(2*n + 1)!*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
6.6.E6 Ci ( z ) = γ + ln z + n = 1 ( - 1 ) n z 2 n ( 2 n ) ! ( 2 n ) cosine-integral 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑧 2 𝑛 2 𝑛 2 𝑛 {\displaystyle{\displaystyle\mathrm{Ci}\left(z\right)=\gamma+\ln z+\sum_{n=1}^% {\infty}\frac{(-1)^{n}z^{2n}}{(2n)!(2n)}}}
\cosint@{z} = \EulerConstant+\ln@@{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{2n}}{(2n)!(2n)}

Ci(z) = gamma + ln(z)+ sum(((- 1)^(n)* (z)^(2*n))/(factorial(2*n)*(2*n)), n = 1..infinity)
CosIntegral[z] == EulerGamma + Log[z]+ Sum[Divide[(- 1)^(n)* (z)^(2*n),(2*n)!*(2*n)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]