Exponential, Logarithmic, Sine, and Cosine Integrals - 6.11 Relations to Other Functions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.11.E1 E 1 ( z ) = Γ ( 0 , z ) exponential-integral 𝑧 incomplete-Gamma 0 𝑧 {\displaystyle{\displaystyle E_{1}\left(z\right)=\Gamma\left(0,z\right)}}
\expintE@{z} = \incGamma@{0}{z}

Ei(z) = GAMMA(0, z)
ExpIntegralE[1, z] == Gamma[0, z]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
6.11.E2 E 1 ( z ) = e - z U ( 1 , 1 , z ) exponential-integral 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 1 1 𝑧 {\displaystyle{\displaystyle E_{1}\left(z\right)=e^{-z}U\left(1,1,z\right)}}
\expintE@{z} = e^{-z}\KummerconfhyperU@{1}{1}{z}

Ei(z) = exp(- z)*KummerU(1, 1, z)
ExpIntegralE[1, z] == Exp[- z]*HypergeometricU[1, 1, z]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744991+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]