Gamma Function - 5.16 Sums
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
5.16.E1 | \sum_{k=1}^{\infty}(-1)^{k}\digamma'@{k} = -\frac{\pi^{2}}{8} |
|
sum((- 1)^(k)* diff( Psi(k), k$(1) ), k = 1..infinity) = -((Pi)^(2))/(8)
|
Sum[(- 1)^(k)* D[PolyGamma[k], {k, 1}], {k, 1, Infinity}, GenerateConditions->None] == -Divide[(Pi)^(2),8]
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
5.16.E2 | \sum_{k=1}^{\infty}\frac{1}{k}\digamma'@{k+1} = \Riemannzeta@{3} |
|
sum((1)/(k)*subs( temp=k + 1, diff( Psi(temp), temp$(1) ) ), k = 1..infinity) = Zeta(3)
|
Sum[Divide[1,k]*(D[PolyGamma[temp], {temp, 1}]/.temp-> k + 1), {k, 1, Infinity}, GenerateConditions->None] == Zeta[3]
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
5.16.E2 | \Riemannzeta@{3} = -\frac{1}{2}\digamma''@{1} |
|
Zeta(3) = -(1)/(2)*subs( temp=1, diff( Psi(temp), temp$(2) ) )
|
Zeta[3] == -Divide[1,2]*(D[PolyGamma[temp], {temp, 2}]/.temp-> 1)
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |