Gamma Function - 5.16 Sums

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.16.E1 k = 1 ( - 1 ) k ψ ( k ) = - π 2 8 superscript subscript 𝑘 1 superscript 1 𝑘 diffop digamma 1 𝑘 superscript 𝜋 2 8 {\displaystyle{\displaystyle\sum_{k=1}^{\infty}(-1)^{k}\psi'\left(k\right)=-% \frac{\pi^{2}}{8}}}
\sum_{k=1}^{\infty}(-1)^{k}\digamma'@{k} = -\frac{\pi^{2}}{8}

sum((- 1)^(k)* diff( Psi(k), k$(1) ), k = 1..infinity) = -((Pi)^(2))/(8)
Sum[(- 1)^(k)* D[PolyGamma[k], {k, 1}], {k, 1, Infinity}, GenerateConditions->None] == -Divide[(Pi)^(2),8]
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
5.16.E2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) superscript subscript 𝑘 1 1 𝑘 diffop digamma 1 𝑘 1 Riemann-zeta 3 {\displaystyle{\displaystyle\sum_{k=1}^{\infty}\frac{1}{k}\psi'\left(k+1\right% )=\zeta\left(3\right)}}
\sum_{k=1}^{\infty}\frac{1}{k}\digamma'@{k+1} = \Riemannzeta@{3}

sum((1)/(k)*subs( temp=k + 1, diff( Psi(temp), temp$(1) ) ), k = 1..infinity) = Zeta(3)
Sum[Divide[1,k]*(D[PolyGamma[temp], {temp, 1}]/.temp-> k + 1), {k, 1, Infinity}, GenerateConditions->None] == Zeta[3]
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
5.16.E2 ζ ( 3 ) = - 1 2 ψ ′′ ( 1 ) Riemann-zeta 3 1 2 diffop digamma 2 1 {\displaystyle{\displaystyle\zeta\left(3\right)=-\frac{1}{2}\psi''\left(1% \right)}}
\Riemannzeta@{3} = -\frac{1}{2}\digamma''@{1}

Zeta(3) = -(1)/(2)*subs( temp=1, diff( Psi(temp), temp$(2) ) )
Zeta[3] == -Divide[1,2]*(D[PolyGamma[temp], {temp, 2}]/.temp-> 1)
Successful Successful Skip - symbolical successful subtest Successful [Tested: 1]