Elementary Functions - 4.15 Graphics

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.15.E1 cos ( x + i y ) = sin ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\cos\left(x+iy\right)=\sin\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}

cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y)
Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E2 cot ( x + i y ) = - tan ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\cot\left(x+iy\right)=-\tan\left(x+\tfrac{1}{2}\pi% +iy\right)}}
\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}

cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y)
Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E3 sec ( x + i y ) = csc ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\sec\left(x+iy\right)=\csc\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}

sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y)
Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]