Elementary Functions - 4.12 Generalized Logarithms and Exponentials

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.12.E1 ϕ ( x + 1 ) = e ϕ ( x ) italic-ϕ 𝑥 1 superscript 𝑒 italic-ϕ 𝑥 {\displaystyle{\displaystyle\phi(x+1)=e^{\phi(x)}}}
\phi(x+1) = e^{\phi(x)}
- 1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle-1<x,x<\infty}}
phi(x + 1) = exp(phi(x))
\[Phi][x + 1] == Exp[\[Phi][x]]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E2 ϕ ( 0 ) = 0 italic-ϕ 0 0 {\displaystyle{\displaystyle\phi(0)=0}}
\phi(0) = 0

phi(0) = 0
\[Phi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E3 ψ ( e x ) = 1 + ψ ( x ) 𝜓 superscript 𝑒 𝑥 1 𝜓 𝑥 {\displaystyle{\displaystyle\psi(e^{x})=1+\psi(x)}}
\psi(e^{x}) = 1+\psi(x)
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
psi(exp(x)) = 1 + psi(x)
\[Psi][Exp[x]] == 1 + \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E4 ψ ( 0 ) = 0 𝜓 0 0 {\displaystyle{\displaystyle\psi(0)=0}}
\psi(0) = 0

psi(0) = 0
\[Psi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E5 ϕ ( x ) = ψ ( x ) italic-ϕ 𝑥 𝜓 𝑥 {\displaystyle{\displaystyle\phi(x)=\psi(x)}}
\phi(x) = \psi(x)
0 x , x 1 formulae-sequence 0 𝑥 𝑥 1 {\displaystyle{\displaystyle 0\leq x,x\leq 1}}
phi(x) = psi(x)
\[Phi][x] == \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E6 ϕ ( x ) = ln ( x + 1 ) italic-ϕ 𝑥 𝑥 1 {\displaystyle{\displaystyle\phi(x)=\ln\left(x+1\right)}}
\phi(x) = \ln@{x+1}
- 1 < x , x < 0 formulae-sequence 1 𝑥 𝑥 0 {\displaystyle{\displaystyle-1<x,x<0}}
phi(x) = ln(x + 1)
\[Phi][x] == Log[x + 1]
Failure Failure Error Skip - No test values generated
4.12.E8 ψ ( x ) = e x - 1 𝜓 𝑥 superscript 𝑒 𝑥 1 {\displaystyle{\displaystyle\psi(x)=e^{x}-1}}
\psi(x) = e^{x}-1
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
psi(x) = exp(x)- 1
\[Psi][x] == Exp[x]- 1
Skipped - no semantic math Skipped - no semantic math - -