Integrals with Coalescing Saddles - 36.13 Kelvin’s Ship-Wave Pattern

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
36.13.E1 z ( ϕ , ρ ) = - π / 2 π / 2 cos ( ρ cos ( θ + ϕ ) cos 2 θ ) d θ 𝑧 italic-ϕ 𝜌 superscript subscript 𝜋 2 𝜋 2 𝜌 𝜃 italic-ϕ 2 𝜃 𝜃 {\displaystyle{\displaystyle z(\phi,\rho)=\int_{-\pi/2}^{\pi/2}\cos\left(\rho% \frac{\cos\left(\theta+\phi\right)}{{\cos^{2}}\theta}\right)\mathrm{d}\theta}}
z(\phi,\rho) = \int_{-\pi/2}^{\pi/2}\cos@{\rho\frac{\cos@{\theta+\phi}}{\cos^{2}@@{\theta}}}\diff{\theta}

z(phi , rho) = int(cos(rho*(cos(theta + phi))/((cos(theta))^(2))), theta = - Pi/2..Pi/2)
z[\[Phi], \[Rho]] == Integrate[Cos[\[Rho]*Divide[Cos[\[Theta]+ \[Phi]],(Cos[\[Theta]])^(2)]], {\[Theta], - Pi/2, Pi/2}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Error
36.13.E2 ρ = g r / V 2 𝜌 𝑔 𝑟 superscript 𝑉 2 {\displaystyle{\displaystyle\rho=\ifrac{gr}{V^{2}}}}
\rho = \ifrac{gr}{V^{2}}

rho = (g*r)/((V)^(2))
\[Rho] == Divide[g*r,(V)^(2)]
Skipped - no semantic math Skipped - no semantic math - -
36.13#Ex1 θ + ( ϕ ) = 1 2 ( arcsin ( 3 sin ϕ ) - ϕ ) subscript 𝜃 italic-ϕ 1 2 3 italic-ϕ italic-ϕ {\displaystyle{\displaystyle\theta_{+}(\phi)=\tfrac{1}{2}(\operatorname{arcsin% }\left(3\sin\phi\right)-\phi)}}
\theta_{+}(\phi) = \tfrac{1}{2}(\asin@{3\sin@@{\phi}}-\phi)

theta[+](phi) = (1)/(2)*(arcsin(3*sin(phi))- phi)
Subscript[\[Theta], +][\[Phi]] == Divide[1,2]*(ArcSin[3*Sin[\[Phi]]]- \[Phi])
Error Failure - Error
36.13#Ex2 θ - ( ϕ ) = 1 2 ( π - ϕ - arcsin ( 3 sin ϕ ) ) subscript 𝜃 italic-ϕ 1 2 𝜋 italic-ϕ 3 italic-ϕ {\displaystyle{\displaystyle\theta_{-}(\phi)=\tfrac{1}{2}(\pi-\phi-% \operatorname{arcsin}\left(3\sin\phi\right))}}
\theta_{-}(\phi) = \tfrac{1}{2}(\pi-\phi-\asin@{3\sin@@{\phi}})

theta[-](phi) = (1)/(2)*(Pi - phi - arcsin(3*sin(phi)))
Subscript[\[Theta], -][\[Phi]] == Divide[1,2]*(Pi - \[Phi]- ArcSin[3*Sin[\[Phi]]])
Error Failure - Error
36.13.E5 | ϕ | = ϕ c italic-ϕ subscript italic-ϕ 𝑐 {\displaystyle{\displaystyle|\phi|=\phi_{c}}}
|\phi| = \phi_{c}

abs(phi) = phi[c]
Abs[\[Phi]] == Subscript[\[Phi], c]
Failure Failure
Failed [282 / 300]
Result: .1339745960-.5000000000*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, phi[c] = 1/2*3^(1/2)+1/2*I}

Result: 1.500000000-.8660254040*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, phi[c] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [282 / 300]
Result: Complex[0.1339745962155613, -0.49999999999999994]
Test Values: {Rule[c, -1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, c], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.4999999999999998, -0.8660254037844387]
Test Values: {Rule[c, -1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, c], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
36.13.E5 ϕ c = arcsin ( 1 3 ) subscript italic-ϕ 𝑐 1 3 {\displaystyle{\displaystyle\phi_{c}=\operatorname{arcsin}\left(\tfrac{1}{3}% \right)}}
\phi_{c} = \asin@{\tfrac{1}{3}}

phi[c] = arcsin((1)/(3))
Subscript[\[Phi], c] == ArcSin[Divide[1,3]]
Failure Failure
Failed [300 / 300]
Result: .5261884946+.5000000000*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, phi[c] = 1/2*3^(1/2)+1/2*I}

Result: -.8398369094+.8660254040*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, phi[c] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.5261884943303168, 0.49999999999999994]
Test Values: {Rule[c, -1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, c], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.8398369094541217, 0.8660254037844387]
Test Values: {Rule[c, -1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, c], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
36.13.E6 ω ( 𝐤 ) = g k + 𝐕 𝐤 𝜔 𝐤 𝑔 𝑘 𝐕 𝐤 {\displaystyle{\displaystyle\omega(\mathbf{k})=\sqrt{gk}+\mathbf{V}\cdot% \mathbf{k}}}
\omega(\mathbf{k}) = \sqrt{gk}+\mathbf{V}\cdot\mathbf{k}

omega(k) = sqrt(g*k)+ V * k
\[Omega][k] == Sqrt[g*k]+ V * k
Skipped - no semantic math Skipped - no semantic math - -