Coulomb Functions - 33.9 Expansions in Series of Bessel Functions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.9.E2 k ( k + 2 + 1 ) 2 k + 2 + 1 a k - 2 η a k - 1 + ( k - 2 ) ( k + 2 - 1 ) 2 k + 2 - 3 a k - 2 = 0 𝑘 𝑘 2 1 2 𝑘 2 1 subscript 𝑎 𝑘 2 𝜂 subscript 𝑎 𝑘 1 𝑘 2 𝑘 2 1 2 𝑘 2 3 subscript 𝑎 𝑘 2 0 {\displaystyle{\displaystyle\frac{k(k+2\ell+1)}{2k+2\ell+1}a_{k}-2\eta a_{k-1}% +\frac{(k-2)(k+2\ell-1)}{2k+2\ell-3}a_{k-2}=0}}
\frac{k(k+2\ell+1)}{2k+2\ell+1}a_{k}-2\eta a_{k-1}+\frac{(k-2)(k+2\ell-1)}{2k+2\ell-3}a_{k-2} = 0

(k*(k + 2*ell + 1))/(2*k + 2*ell + 1)*a[k]- 2*eta*a[k - 1]+((k - 2)*(k + 2*ell - 1))/(2*k + 2*ell - 3)*a[k - 2] = 0
Divide[k*(k + 2*\[ScriptL]+ 1),2*k + 2*\[ScriptL]+ 1]*Subscript[a, k]- 2*\[Eta]*Subscript[a, k - 1]+Divide[(k - 2)*(k + 2*\[ScriptL]- 1),2*k + 2*\[ScriptL]- 3]*Subscript[a, k - 2] == 0
Skipped - no semantic math Skipped - no semantic math - -
33.9.E5 4 η 2 ( k - 2 ) b k + 1 + k b k - 1 + b k - 2 = 0 4 superscript 𝜂 2 𝑘 2 subscript 𝑏 𝑘 1 𝑘 subscript 𝑏 𝑘 1 subscript 𝑏 𝑘 2 0 {\displaystyle{\displaystyle 4\eta^{2}(k-2\ell)b_{k+1}+kb_{k-1}+b_{k-2}=0}}
4\eta^{2}(k-2\ell)b_{k+1}+kb_{k-1}+b_{k-2} = 0
k = 2 + 2 𝑘 2 2 {\displaystyle{\displaystyle k=2\ell+2}}
4*(eta)^(2)*(k - 2*ell)*b[k + 1]+ k*b[k - 1]+ b[k - 2] = 0
4*\[Eta]^(2)*(k - 2*\[ScriptL])*Subscript[b, k + 1]+ k*Subscript[b, k - 1]+ Subscript[b, k - 2] == 0
Skipped - no semantic math Skipped - no semantic math - -