Coulomb Functions - 33.5 Limiting Forms for Small , Small , or Large

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.5#Ex7 F ( 0 , ρ ) = ( π ρ / 2 ) 1 / 2 J + 1 2 ( ρ ) regular-Coulomb-F 0 𝜌 superscript 𝜋 𝜌 2 1 2 Bessel-J 1 2 𝜌 {\displaystyle{\displaystyle F_{\ell}\left(0,\rho\right)=(\pi\rho/2)^{1/2}J_{% \ell+\frac{1}{2}}\left(\rho\right)}}
\regCoulombF{\ell}@{0}{\rho} = (\pi\rho/2)^{1/2}\BesselJ{\ell+\frac{1}{2}}@{\rho}
( ( + 1 2 ) + k + 1 ) > 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((\ell+\frac{1}{2})+k+1)>0}}
CoulombF(ell, 0, rho) = (Pi*rho/2)^(1/2)* BesselJ(ell +(1)/(2), rho)
Error
Failure Missing Macro Error Error -
33.5#Ex9 F 0 ( 0 , ρ ) = sin ρ regular-Coulomb-F 0 0 𝜌 𝜌 {\displaystyle{\displaystyle F_{0}\left(0,\rho\right)=\sin\rho}}
\regCoulombF{0}@{0}{\rho} = \sin@@{\rho}

CoulombF(0, 0, rho) = sin(rho)
Error
Successful Missing Macro Error - -
33.5.E6 2 ! ( 2 + 1 ) ! = 1 ( 2 + 1 ) !! superscript 2 2 1 1 double-factorial 2 1 {\displaystyle{\displaystyle\frac{2^{\ell}\ell!}{(2\ell+1)!}=\frac{1}{(2\ell+1% )!!}}}
\frac{2^{\ell}\ell!}{(2\ell+1)!} = \frac{1}{(2\ell+1)!!}
( + 1 + i η ) > 0 1 imaginary-unit 𝜂 0 {\displaystyle{\displaystyle\Re(\ell+1+\mathrm{i}\eta)>0}}
((2)^(ell)* factorial(ell))/(factorial(2*ell + 1)) = (1)/(doublefactorial(2*ell + 1))
Divide[(2)^\[ScriptL]* (\[ScriptL])!,(2*\[ScriptL]+ 1)!] == Divide[1,(2*\[ScriptL]+ 1)!!]
Failure Failure Error
Failed [1 / 1]
Result: Plus[Times[Power[2.0, ], Factorial[], Power[Factorial[Plus[1.0, Times[2.0, ]]], -1]], Times[-1.0, Power[Factorial2[Plus[1.0, Times[2.0, ]]], -1]]]
Test Values: {}