Coulomb Functions - 33.4 Recurrence Relations and Derivatives

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.4.E2 R X - 1 - T X + R + 1 X + 1 = 0 subscript 𝑅 subscript 𝑋 1 subscript 𝑇 subscript 𝑋 subscript 𝑅 1 subscript 𝑋 1 0 {\displaystyle{\displaystyle R_{\ell}X_{\ell-1}-T_{\ell}X_{\ell}+R_{\ell+1}X_{% \ell+1}=0}}
R_{\ell}X_{\ell-1}-T_{\ell}X_{\ell}+R_{\ell+1}X_{\ell+1} = 0
1 1 {\displaystyle{\displaystyle\ell\geq 1}}
R[ell]*X[ell - 1]-(S[ell]+ S[ell + 1])*X[ell]+ R[ell + 1]*X[ell + 1] = 0
Subscript[R, \[ScriptL]]*Subscript[X, \[ScriptL]- 1]-(Subscript[S, \[ScriptL]]+ Subscript[S, \[ScriptL]+ 1])*Subscript[X, \[ScriptL]]+ Subscript[R, \[ScriptL]+ 1]*Subscript[X, \[ScriptL]+ 1] == 0
Skipped - no semantic math Skipped - no semantic math - -