Coulomb Functions - 33.12 Asymptotic Expansions for Large
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
33.12#Ex6 | B_{1} = -\tfrac{1}{5}x |
|
B[1] = -(1)/(5)*x |
Subscript[B, 1] == -Divide[1,5]*x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
33.12#Ex7 | B_{2} = \tfrac{1}{350}(7x^{5}-30x^{2}) |
|
B[2] = (1)/(350)*(7*(x)^(5)- 30*(x)^(2)) |
Subscript[B, 2] == Divide[1,350]*(7*(x)^(5)- 30*(x)^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
33.12#Ex8 | B_{3} = \tfrac{1}{15750}(264x^{6}-290x^{3}-560) |
|
B[3] = (1)/(15750)*(264*(x)^(6)- 290*(x)^(3)- 560) |
Subscript[B, 3] == Divide[1,15750]*(264*(x)^(6)- 290*(x)^(3)- 560) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
33.12.E8 | \deriv[2]{w}{z} = \left(4\eta^{2}\left(\frac{1-z}{z}\right)+\frac{\ell(\ell+1)}{z^{2}}\right)w |
|
diff(w, [z$(2)]) = (4*(eta((1 - z)/(z)))^(2)+(ell*(ell + 1))/((z)^(2)))*w
|
D[w, {z, 2}] == (4*(\[Eta][Divide[1 - z,z]])^(2)+Divide[\[ScriptL]*(\[ScriptL]+ 1),(z)^(2)])*w
|
Failure | Failure | Error | Failed [296 / 300]
Result: Complex[-3.7320508075688767, 1.5358983848622458]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-7.196152422706632, 3.535898384862246]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 2], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |