Coulomb Functions - 33.12 Asymptotic Expansions for Large

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.12#Ex6 B 1 = - 1 5 ⁒ x subscript 𝐡 1 1 5 π‘₯ {\displaystyle{\displaystyle B_{1}=-\tfrac{1}{5}x}}
B_{1} = -\tfrac{1}{5}x

B[1] = -(1)/(5)*x
Subscript[B, 1] == -Divide[1,5]*x
Skipped - no semantic math Skipped - no semantic math - -
33.12#Ex7 B 2 = 1 350 ⁒ ( 7 ⁒ x 5 - 30 ⁒ x 2 ) subscript 𝐡 2 1 350 7 superscript π‘₯ 5 30 superscript π‘₯ 2 {\displaystyle{\displaystyle B_{2}=\tfrac{1}{350}(7x^{5}-30x^{2})}}
B_{2} = \tfrac{1}{350}(7x^{5}-30x^{2})

B[2] = (1)/(350)*(7*(x)^(5)- 30*(x)^(2))
Subscript[B, 2] == Divide[1,350]*(7*(x)^(5)- 30*(x)^(2))
Skipped - no semantic math Skipped - no semantic math - -
33.12#Ex8 B 3 = 1 15750 ⁒ ( 264 ⁒ x 6 - 290 ⁒ x 3 - 560 ) subscript 𝐡 3 1 15750 264 superscript π‘₯ 6 290 superscript π‘₯ 3 560 {\displaystyle{\displaystyle B_{3}=\tfrac{1}{15750}(264x^{6}-290x^{3}-560)}}
B_{3} = \tfrac{1}{15750}(264x^{6}-290x^{3}-560)

B[3] = (1)/(15750)*(264*(x)^(6)- 290*(x)^(3)- 560)
Subscript[B, 3] == Divide[1,15750]*(264*(x)^(6)- 290*(x)^(3)- 560)
Skipped - no semantic math Skipped - no semantic math - -
33.12.E8 d 2 w d z 2 = ( 4 ⁒ Ξ· 2 ⁒ ( 1 - z z ) + β„“ ⁒ ( β„“ + 1 ) z 2 ) ⁒ w derivative 𝑀 𝑧 2 4 superscript πœ‚ 2 1 𝑧 𝑧 β„“ β„“ 1 superscript 𝑧 2 𝑀 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}=\left(% 4\eta^{2}\left(\frac{1-z}{z}\right)+\frac{\ell(\ell+1)}{z^{2}}\right)w}}
\deriv[2]{w}{z} = \left(4\eta^{2}\left(\frac{1-z}{z}\right)+\frac{\ell(\ell+1)}{z^{2}}\right)w

diff(w, [z$(2)]) = (4*(eta((1 - z)/(z)))^(2)+(ell*(ell + 1))/((z)^(2)))*w
D[w, {z, 2}] == (4*(\[Eta][Divide[1 - z,z]])^(2)+Divide[\[ScriptL]*(\[ScriptL]+ 1),(z)^(2)])*w
Failure Failure Error
Failed [296 / 300]
Result: Complex[-3.7320508075688767, 1.5358983848622458]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β„“, 1], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-7.196152422706632, 3.535898384862246]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β„“, 2], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data