Heun Functions - 31.3 Basic Solutions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
31.3.E1 H ( a , q ; α , β , γ , δ ; z ) = j = 0 c j z j Heun-local 𝑎 𝑞 𝛼 𝛽 𝛾 𝛿 𝑧 superscript subscript 𝑗 0 subscript 𝑐 𝑗 superscript 𝑧 𝑗 {\displaystyle{\displaystyle\mathit{H\!\ell}\left(a,q;\alpha,\beta,\gamma,% \delta;z\right)=\sum_{j=0}^{\infty}c_{j}z^{j}}}
\HeunHl@{a}{q}{\alpha}{\beta}{\gamma}{\delta}{z} = \sum_{j=0}^{\infty}c_{j}z^{j}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
HeunG(a, q, alpha, beta, gamma, delta, z) = sum(c[j]*(z)^(j), j = 0..infinity)
Error
Failure Missing Macro Error Manual Skip! -
31.3.E2 a γ c 1 - q c 0 = 0 𝑎 𝛾 subscript 𝑐 1 𝑞 subscript 𝑐 0 0 {\displaystyle{\displaystyle a\gamma c_{1}-qc_{0}=0}}
a\gamma c_{1}-qc_{0} = 0

a*gamma*c[1]- q*c[0] = 0
a*\[Gamma]*Subscript[c, 1]- q*Subscript[c, 0] == 0
Skipped - no semantic math Skipped - no semantic math - -
31.3.E3 R j c j + 1 - ( Q j + q ) c j + P j c j - 1 = 0 subscript 𝑅 𝑗 subscript 𝑐 𝑗 1 subscript 𝑄 𝑗 𝑞 subscript 𝑐 𝑗 subscript 𝑃 𝑗 subscript 𝑐 𝑗 1 0 {\displaystyle{\displaystyle R_{j}c_{j+1}-(Q_{j}+q)c_{j}+P_{j}c_{j-1}=0}}
R_{j}c_{j+1}-(Q_{j}+q)c_{j}+P_{j}c_{j-1} = 0
j 1 𝑗 1 {\displaystyle{\displaystyle j\geq 1}}
(a*(j + 1)*(j + gamma))*c[j + 1]-(Q[j]+ q)*c[j]+ P[j]*c[j - 1] = 0
(a*(j + 1)*(j + \[Gamma]))*Subscript[c, j + 1]-(Subscript[Q, j]+ q)*Subscript[c, j]+ Subscript[P, j]*Subscript[c, j - 1] == 0
Skipped - no semantic math Skipped - no semantic math - -