Heun Functions - 31.15 Stieltjes Polynomials

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
31.15.E1 d 2 w d z 2 + ( j = 1 N γ j z - a j ) d w d z + Φ ( z ) j = 1 N ( z - a j ) w = 0 derivative 𝑤 𝑧 2 superscript subscript 𝑗 1 𝑁 subscript 𝛾 𝑗 𝑧 subscript 𝑎 𝑗 derivative 𝑤 𝑧 Φ 𝑧 superscript subscript product 𝑗 1 𝑁 𝑧 subscript 𝑎 𝑗 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% \sum_{j=1}^{N}\frac{\gamma_{j}}{z-a_{j}}\right)\frac{\mathrm{d}w}{\mathrm{d}z}% +\frac{\Phi(z)}{\prod_{j=1}^{N}(z-a_{j})}w=0}}
\deriv[2]{w}{z}+\left(\sum_{j=1}^{N}\frac{\gamma_{j}}{z-a_{j}}\right)\deriv{w}{z}+\frac{\Phi(z)}{\prod_{j=1}^{N}(z-a_{j})}w = 0

diff(w, [z$(2)])+(sum((gamma[j])/(z - a[j]), j = 1..N))*diff(w, z)+(Phi(z))/(product(z - a[j], j = 1..N))*w = 0
D[w, {z, 2}]+(Sum[Divide[Subscript[\[Gamma], j],z - Subscript[a, j]], {j, 1, N}, GenerateConditions->None])*D[w, z]+Divide[\[CapitalPhi][z],Product[z - Subscript[a, j], {j, 1, N}, GenerateConditions->None]]*w == 0
Failure Failure Error
Failed [300 / 300]
Result: Times[Complex[0.0, 1.0], Power[NProduct[0
Test Values: {j, 1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]}, Rule[GenerateConditions, None]], -1]], {Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Φ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Times[Complex[0.0, 1.0], Power[NProduct[0
Test Values: {j, 1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]}, Rule[GenerateConditions, None]], -1]], {Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Φ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, j], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
31.15#Ex1 γ j > 0 subscript 𝛾 𝑗 0 {\displaystyle{\displaystyle\gamma_{j}>0}}
\gamma_{j} > 0

gamma[j] > 0
Subscript[\[Gamma], j] > 0
Skipped - no semantic math Skipped - no semantic math - -
31.15.E7 q j = γ j k = 1 n 1 z k - a j subscript 𝑞 𝑗 subscript 𝛾 𝑗 superscript subscript 𝑘 1 𝑛 1 subscript 𝑧 𝑘 subscript 𝑎 𝑗 {\displaystyle{\displaystyle q_{j}=\gamma_{j}\sum_{k=1}^{n}\frac{1}{z_{k}-a_{j% }}}}
q_{j} = \gamma_{j}\sum_{k=1}^{n}\frac{1}{z_{k}-a_{j}}
j = 1 𝑗 1 {\displaystyle{\displaystyle j=1}}
q[j] = gamma[j]*sum((1)/(z[k]- a[j]), k = 1..n)
Subscript[q, j] == Subscript[\[Gamma], j]*Sum[Divide[1,Subscript[z, k]- Subscript[a, j]], {k, 1, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -