Lamé Functions - 29.11 Lamé Wave Equation

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
29.11.E1 d 2 w d z 2 + ( h - ν ( ν + 1 ) k 2 sn 2 ( z , k ) + k 2 ω 2 sn 4 ( z , k ) ) w = 0 derivative 𝑤 𝑧 2 𝜈 𝜈 1 superscript 𝑘 2 Jacobi-elliptic-sn 2 𝑧 𝑘 superscript 𝑘 2 superscript 𝜔 2 Jacobi-elliptic-sn 4 𝑧 𝑘 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+(h-\nu% (\nu+1)k^{2}{\operatorname{sn}^{2}}\left(z,k\right)+k^{2}\omega^{2}{% \operatorname{sn}^{4}}\left(z,k\right))w=0}}
\deriv[2]{w}{z}+(h-\nu(\nu+1)k^{2}\Jacobiellsnk^{2}@{z}{k}+k^{2}\omega^{2}\Jacobiellsnk^{4}@{z}{k})w = 0

diff(w, [z$(2)])+(h - nu*(nu + 1)*(k)^(2)* (JacobiSN(z, k))^(2)+ (k)^(2)* (omega)^(2)* (JacobiSN(z, k))^(4))*w = 0
D[w, {z, 2}]+(h - \[Nu]*(\[Nu]+ 1)*(k)^(2)* (JacobiSN[z, (k)^2])^(2)+ (k)^(2)* \[Omega]^(2)* (JacobiSN[z, (k)^2])^(4))*w == 0
Failure Failure
Failed [300 / 300]
Result: .4970479804-.2136667430*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.5039614158-1.687364305*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.4970479802306743, -0.21366674241821534]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.5039614145885605, -1.6873643054323533]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data