Mathieu Functions and Hill’s Equation - 28.32 Mathematical Applications
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
28.32#Ex1 | x = c\cosh@@{\xi}\cos@@{\eta} |
|
x = c*cosh(xi)*cos(eta)
|
x == c*Cosh[\[Xi]]*Cos[\[Eta]]
|
Failure | Failure | Failed [300 / 300] Result: 3.124702180-.2170218424*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = 1/2*3^(1/2)+1/2*I}
Result: 2.064186236-.8699661686*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[3.124702180526338, -0.2170218422419914]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[2.0641862358993213, -0.869966168513175]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.32#Ex2 | y = c\sinh@@{\xi}\sin@@{\eta} |
|
y = c*sinh(xi)*sin(eta)
|
y == c*Sinh[\[Xi]]*Sin[\[Eta]]
|
Failure | Failure | Failed [300 / 300] Result: -.7333267200+1.299026649*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, y = -3/2}
Result: 2.266673280+1.299026649*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, y = 3/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.7333267206780307, 1.2990266484068542]
Test Values: {Rule[c, -1.5], Rule[y, -1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.3699661685131748, 0.9358137641006792]
Test Values: {Rule[c, -1.5], Rule[y, -1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.32.E2 | \pderiv[2]{V}{x}+\pderiv[2]{V}{y}+k^{2}V = 0 |
|
diff(V, [x$(2)])+ diff(V, [y$(2)])+ (k)^(2)* V = 0
|
D[V, {x, 2}]+ D[V, {y, 2}]+ (k)^(2)* V == 0
|
Failure | Failure | Failed [300 / 300] Result: .8660254040+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}
Result: 3.464101616+2.*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[3.464101615137755, 1.9999999999999998]
Test Values: {Rule[k, 2], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[y, -1.5]}
... skip entries to safe data |
28.32.E3 | \pderiv[2]{V}{\xi}+\pderiv[2]{V}{\eta}+\frac{1}{2}c^{2}k^{2}(\cosh@{2\xi}-\cos@{2\eta})V = 0 |
|
diff(V, [xi$(2)])+ diff(V, [eta$(2)])+(1)/(2)*(c)^(2)* (k)^(2)*(cosh(2*xi)- cos(2*eta))*V = 0
|
D[V, {\[Xi], 2}]+ D[V, {\[Eta], 2}]+Divide[1,2]*(c)^(2)* (k)^(2)*(Cosh[2*\[Xi]]- Cos[2*\[Eta]])*V == 0
|
Failure | Failure | Failed [276 / 300] Result: -.1726552223+4.399682965*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -.6906208892+17.59873186*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [276 / 300]
Result: Complex[-0.172655223437435, 4.399682962494039]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.69062089374974, 17.598731849976154]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
28.32.E4 | \pderiv[2]{K}{z}-\pderiv[2]{K}{\zeta} = 2q\left(\cos@{2z}-\cos@{2\zeta}\right)K |
|
diff(K, [z$(2)])- diff(K, [zeta$(2)]) = 2*q*(cos(2*z)- cos(2*zeta))*K
|
D[K, {z, 2}]- D[K, {\[Zeta], 2}] == 2*q*(Cos[2*z]- Cos[2*\[Zeta]])*K
|
Failure | Failure | Failed [240 / 300] Result: -4.176649406+6.620283744*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
Result: -4.176649406+6.620283744*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2-1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [240 / 300]
Result: Complex[-4.176649405937627, 6.620283737597687]
Test Values: {Rule[K, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-4.17664940593763, 6.620283737597683]
Test Values: {Rule[K, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
28.32#Ex3 | x_{1} = \tfrac{1}{2}c\left(\cosh@{2\alpha}+\cos@{2\beta}-\cosh@{2\gamma}\right) |
|
x[1] = (1)/(2)*c*(cosh(2*alpha)+ cos(2*beta)- cosh(2*gamma))
|
Subscript[x, 1] == Divide[1,2]*c*(Cosh[2*\[Alpha]]+ Cos[2*\[Beta]]- Cosh[2*\[Gamma]])
|
Failure | Failure | Failed [300 / 300] Result: 6.366481639+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[1] = 1/2*3^(1/2)+1/2*I}
Result: 5.000456235+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[6.493212844498693, -1.2277437153775796]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[5.127187440714255, -0.8617183115931409]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.32#Ex4 | x_{2} = 2c\cosh@@{\alpha}\cos@@{\beta}\sinh@@{\gamma} |
|
x[2] = 2*c*cosh(alpha)*cos(beta)*sinh(gamma)
|
Subscript[x, 2] == 2*c*Cosh[\[Alpha]]*Cos[\[Beta]]*Sinh[\[Gamma]]
|
Failure | Failure | Failed [300 / 300] Result: 1.170446049+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[2] = 1/2*3^(1/2)+1/2*I}
Result: -.1955793552+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.2946642543328961, 0.8348348760715232]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.07136114945154226, 1.200860279855962]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
28.32#Ex5 | x_{3} = 2c\sinh@@{\alpha}\sin@@{\beta}\cosh@@{\gamma} |
|
x[3] = 2*c*sinh(alpha)*sin(beta)*cosh(gamma)
|
Subscript[x, 3] == 2*c*Sinh[\[Alpha]]*Sin[\[Beta]]*Cosh[\[Gamma]]
|
Failure | Failure | Failed [300 / 300] Result: 8.329140826+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[3] = 1/2*3^(1/2)+1/2*I}
Result: 6.963115422+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[3] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[8.689146837902154, 3.488871718498607]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[7.323121434117715, 3.8548971222830457]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |