Mathieu Functions and Hill’s Equation - 28.28 Integrals, Integral Representations, and Integral Equations

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = \cosh@@{z}\cos@@{t}\cos@@{\alpha}+\sinh@@{z}\sin@@{t}\sin@@{\alpha}}
w = \cosh@@{z}\cos@@{t}\cos@@{\alpha}+\sinh@@{z}\sin@@{t}\sin@@{\alpha}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
w = cosh(z)*cos(t)*cos(alpha)+ sinh(z)*sin(t)*sin(alpha)
w == Cosh[z]*Cos[t]*Cos[\[Alpha]]+ Sinh[z]*Sin[t]*Sin[\[Alpha]]
Failure Failure
Failed [299 / 300]
Result: 1.714222282+1.165028049*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .5264627339+1.356668447*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[1.7142222818783819, 1.165028048919159]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Complex[1.2004296775262544, 0.7916410797173274]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
28.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \phase@{h(\cosh@@{z}+ 1)}}
0 < \phase@{h(\cosh@@{z}+ 1)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
0 < argument(h*(cosh(z)+ 1))
0 < Arg[h*(Cosh[z]+ 1)]
Failure Failure
Failed [35 / 70]
Result: 0. < -.8396703302
Test Values: {h = 1/2-1/2*I*3^(1/2), z = 1/2*3^(1/2)+1/2*I}

Result: 0. < -1.272675688
Test Values: {h = 1/2-1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [35 / 70]
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
28.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \phase@{h(\cosh@@{z}- 1)}}
0 < \phase@{h(\cosh@@{z}- 1)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
0 < argument(h*(cosh(z)- 1))
0 < Arg[h*(Cosh[z]- 1)]
Failure Failure
Failed [35 / 70]
Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [35 / 70]
Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
28.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phase@{h(\cosh@@{z}+ 1)} < \pi}
\phase@{h(\cosh@@{z}+ 1)} < \pi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
argument(h*(cosh(z)+ 1)) < Pi
Arg[h*(Cosh[z]+ 1)] < Pi
Failure Failure
Failed [9 / 70]
Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}

Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}

... skip entries to safe data
Failed [9 / 70]
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}

Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}

... skip entries to safe data
28.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phase@{h(\cosh@@{z}- 1)} < \pi}
\phase@{h(\cosh@@{z}- 1)} < \pi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
argument(h*(cosh(z)- 1)) < Pi
Arg[h*(Cosh[z]- 1)] < Pi
Failure Failure
Failed [9 / 70]
Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}

Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}

... skip entries to safe data
Failed [9 / 70]
Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}

Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}

... skip entries to safe data
28.28#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle R(z,t) = \left(\tfrac{1}{2}(\cosh@{2z}+\cos@{2t})\right)^{\ifrac{1}{2}}}
R(z,t) = \left(\tfrac{1}{2}(\cosh@{2z}+\cos@{2t})\right)^{\ifrac{1}{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
R(z , t) = ((1)/(2)*(cosh(2*z)+ cos(2*t)))^((1)/(2))
R[z , t] == (Divide[1,2]*(Cosh[2*z]+ Cos[2*t]))^(Divide[1,2])
Failure Failure
Failed [300 / 300]
Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, -1.500000000)-.8604472605-.6693200135*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, -1.500000000)-.3385916178+.8564557052*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Error
28.28#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle R(z,0) = \cosh@@{z}}
R(z,0) = \cosh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
R(z , 0) = cosh(z)
R[z , 0] == Cosh[z]
Failure Failure
Failed [70 / 70]
Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, 0.)-1.227765517-.4690753764*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, 0.)-.7305430189+.3969495503*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Error
28.28#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{2\iunit\phi} = \dfrac{\cosh@{z+\iunit t}}{\cosh@{z-\iunit t}}}
e^{2\iunit\phi} = \dfrac{\cosh@{z+\iunit t}}{\cosh@{z-\iunit t}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(2*I*phi) = (cosh(z + I*t))/(cosh(z - I*t))
Exp[2*I*\[Phi]] == Divide[Cosh[z + I*t],Cosh[z - I*t]]
Failure Failure
Failed [300 / 300]
Result: .9781641542+.5339822543*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: 1.021212458+.2569827752*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.978164154574313, 0.5339822543847044]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1328205399920523, 0.022001382090719362]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
28.28#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi(z,0) = 0}
\phi(z,0) = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
phi(z , 0) = 0
\[Phi][z , 0] == 0
Skipped - no semantic math Skipped - no semantic math - -
28.28.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha^{(1)}_{\nu,m} = \dfrac{1}{2\pi}\int_{0}^{2\pi}\sin@@{t}\Mathieume{\nu}@{t}{h^{2}}\Mathieume{-\nu-2m-1}@{t}{h^{2}}\diff{t}}
\alpha^{(1)}_{\nu,m} = \dfrac{1}{2\pi}\int_{0}^{2\pi}\sin@@{t}\Mathieume{\nu}@{t}{h^{2}}\Mathieume{-\nu-2m-1}@{t}{h^{2}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
(Subscript[\[Alpha], \[Nu], m])^(1) == Divide[1,2*Pi]*Integrate[Sin[t]*Sqrt[2]*MathieuC[\[Nu], (h)^(2), t]*Sqrt[2]*MathieuC[- \[Nu]- 2*m - 1, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
28.28.E41 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dfrac{\cosh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@@{t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{0}@{n}{m}{z}}
\dfrac{\cosh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@@{t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{0}@{n}{m}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(cosh(z))/((Pi)^(2))*int((sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
Divide[Cosh[z],(Pi)^(2)]*Integrate[Divide[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
Missing Macro Error Missing Macro Error - -
28.28.E42 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dfrac{\sinh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\cos@@{t}\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{1}@{n}{m}{z}}
\dfrac{\sinh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\cos@@{t}\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{1}@{n}{m}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(sinh(z))/((Pi)^(2))*int((cos(t)*subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
Divide[Sinh[z],(Pi)^(2)]*Integrate[Divide[Cos[t]*(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
Missing Macro Error Missing Macro Error - -
28.28.E44 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dfrac{1}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@{2t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{0}@{n}{m}{z}}
\dfrac{1}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@{2t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{0}@{n}{m}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/((Pi)^(2))*int((sin(2*t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
Divide[1,(Pi)^(2)]*Integrate[Divide[Sin[2*t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
Missing Macro Error Missing Macro Error - -
28.28.E45 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dfrac{\sinh@{2z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{1}@{n}{m}{z}}
\dfrac{\sinh@{2z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{1}@{n}{m}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(sinh(2*z))/((Pi)^(2))*int((subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))
Divide[Sinh[2*z],(Pi)^(2)]*Integrate[Divide[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])
Missing Macro Error Missing Macro Error - -