Mathieu Functions and Hill’s Equation - 28.26 Asymptotic Approximations for Large

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.26.E3 ϕ = 2 h sinh z - ( m + 1 2 ) arctan ( sinh z ) italic-ϕ 2 𝑧 𝑚 1 2 𝑧 {\displaystyle{\displaystyle\phi=2h\sinh z-\left(m+\tfrac{1}{2}\right)% \operatorname{arctan}\left(\sinh z\right)}}
\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}

phi = 2*h*sinh(z)-(m +(1)/(2))*arctan(sinh(z))
\[Phi] == 2*h*Sinh[z]-(m +Divide[1,2])*ArcTan[Sinh[z]]
Failure Failure
Failed [300 / 300]
Result: 1.309060595-.9846819085*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 2.148731429-.6275515075*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.3090605953108105, -0.9846819068983852]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.1487314296378672, -0.6275515058300114]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data