Mathieu Functions and Hill’s Equation - 28.14 Fourier Series
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
28.14.E1 | \Mathieume{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)e^{\iunit(\nu+2m)z} |
|
Error
|
Sqrt[2]*MathieuC[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Exp[I*(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
28.14.E2 | \Mathieuce{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\cos@@{(\nu+2m)z} |
|
MathieuCE(nu, q, z) = sum((c[2*m])^(nu)(q)* cos((nu + 2*m)*z), m = - infinity..infinity)
|
MathieuC[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Cos[(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Skipped - Because timed out |
28.14.E3 | \Mathieuse{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\sin@@{(\nu+2m)z} |
|
MathieuSE(nu, q, z) = sum((c[2*m])^(nu)(q)* sin((nu + 2*m)*z), m = - infinity..infinity)
|
MathieuS[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Sin[(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Skipped - Because timed out |
28.14.E4 | qc_{2m+2}-\left(a-(\nu+2m)^{2}\right)c_{2m}+qc_{2m-2} = 0 |
q*c[2*m + 2]-(a -(nu + 2*m)^(2))*c[2*m]+ q*c[2*m - 2] = 0 |
q*Subscript[c, 2*m + 2]-(a -(\[Nu]+ 2*m)^(2))*Subscript[c, 2*m]+ q*Subscript[c, 2*m - 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
28.14.E5 | \sum_{m=-\infty}^{\infty}\left(c_{2m}^{\nu}(q)\right)^{2} = 1 |
|
sum(((c[2*m])^(nu)(q))^(2), m = - infinity..infinity) = 1 |
Sum[((Subscript[c, 2*m])^\[Nu][q])^(2), {m, - Infinity, Infinity}, GenerateConditions->None] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
28.14.E7 | c_{-2m}^{-\nu}(q) = c_{2m}^{\nu}(q) |
|
(c[- 2*m])^(- nu)(q) = (c[2*m])^(nu)(q) |
(Subscript[c, - 2*m])^(- \[Nu])[q] == (Subscript[c, 2*m])^\[Nu][q] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
28.14.E8 | c_{2m}^{\nu}(-q) = (-1)^{m}c_{2m}^{\nu}(q) |
|
(c[2*m])^(nu)(- q) = (- 1)^(m)* (c[2*m])^(nu)(q) |
(Subscript[c, 2*m])^\[Nu][- q] == (- 1)^(m)* (Subscript[c, 2*m])^\[Nu][q] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
28.14#Ex1 | c_{0}^{\nu}(0) = 1 |
|
(c[0])^(nu)(0) = 1 |
(Subscript[c, 0])^\[Nu][0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
28.14#Ex2 | c_{2m}^{\nu}(0) = 0 |
(c[2*m])^(nu)(0) = 0 |
(Subscript[c, 2*m])^\[Nu][0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |