Functions of Number Theory - 27.9 Quadratic Characters

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.9.E1 ( - 1 | p ) = ( - 1 ) ( p - 1 ) / 2 Legendre-symbol 1 𝑝 superscript 1 𝑝 1 2 {\displaystyle{\displaystyle(-1|p)=(-1)^{(p-1)/2}}}
\Legendresym{-1}{p} = (-1)^{(p-1)/2}

LegendreSymbol(- 1, p) = (- 1)^((p - 1)/2)
Error
Failure Missing Macro Error Error -
27.9.E2 ( 2 | p ) = ( - 1 ) ( p 2 - 1 ) / 8 Legendre-symbol 2 𝑝 superscript 1 superscript 𝑝 2 1 8 {\displaystyle{\displaystyle(2|p)=(-1)^{(p^{2}-1)/8}}}
\Legendresym{2}{p} = (-1)^{(p^{2}-1)/8}

LegendreSymbol(2, p) = (- 1)^(((p)^(2)- 1)/8)
Error
Failure Missing Macro Error Error -
27.9.E3 ( p | q ) ⁒ ( q | p ) = ( - 1 ) ( p - 1 ) ⁒ ( q - 1 ) / 4 Legendre-symbol 𝑝 π‘ž Legendre-symbol π‘ž 𝑝 superscript 1 𝑝 1 π‘ž 1 4 {\displaystyle{\displaystyle(p|q)(q|p)=(-1)^{(p-1)(q-1)/4}}}
\Legendresym{p}{q}\Legendresym{q}{p} = (-1)^{(p-1)(q-1)/4}

LegendreSymbol(p, q)*LegendreSymbol(q, p) = (- 1)^((p - 1)*(q - 1)/4)
Error
Failure Missing Macro Error Error -