Functions of Number Theory - 27.14 Unrestricted Partitions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.14.E2 f ⁑ ( x ) = ∏ m = 1 ∞ ( 1 - x m ) Euler-phi π‘₯ superscript subscript product π‘š 1 1 superscript π‘₯ π‘š {\displaystyle{\displaystyle\mathit{f}\left(x\right)=\prod_{m=1}^{\infty}(1-x^% {m})}}
\EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})
| x | < 1 π‘₯ 1 {\displaystyle{\displaystyle|x|<1}}
product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity)
QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 1] Successful [Tested: 1]
27.14.E3 1 f ⁑ ( x ) = βˆ‘ n = 0 ∞ p ⁑ ( n ) ⁒ x n 1 Euler-phi π‘₯ superscript subscript 𝑛 0 partition-function 𝑛 superscript π‘₯ 𝑛 {\displaystyle{\displaystyle\frac{1}{\mathit{f}\left(x\right)}=\sum_{n=0}^{% \infty}p\left(n\right)x^{n}}}
\frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n}
| x | < 1 π‘₯ 1 {\displaystyle{\displaystyle|x|<1}}
(1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity)
Error
Failure Missing Macro Error Error -
27.14.E6 p ⁑ ( n ) = βˆ‘ k = 1 ∞ ( - 1 ) k + 1 ⁒ ( p ⁑ ( n - Ο‰ ⁒ ( k ) ) + p ⁑ ( n - Ο‰ ⁒ ( - k ) ) ) partition-function 𝑛 superscript subscript π‘˜ 1 superscript 1 π‘˜ 1 partition-function 𝑛 πœ” π‘˜ partition-function 𝑛 πœ” π‘˜ {\displaystyle{\displaystyle p\left(n\right)=\sum_{k=1}^{\infty}(-1)^{k+1}% \left(p\left(n-\omega(k)\right)+p\left(n-\omega(-k)\right)\right)}}
\npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right)

nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega(k)))+ nops(partition(n - omega(- k)))), k = 1..infinity)
Error
Error Missing Macro Error - -
27.14.E7 n ⁒ p ⁑ ( n ) = βˆ‘ k = 1 n Οƒ 1 ⁑ ( k ) ⁒ p ⁑ ( n - k ) 𝑛 partition-function 𝑛 superscript subscript π‘˜ 1 𝑛 divisor-sigma 1 π‘˜ partition-function 𝑛 π‘˜ {\displaystyle{\displaystyle np\left(n\right)=\sum_{k=1}^{n}\sigma_{1}\left(k% \right)p\left(n-k\right)}}
n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k}

n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n)
Error
Error Missing Macro Error - -
27.14.E9 p ⁑ ( n ) = 1 Ο€ ⁒ 2 ⁒ βˆ‘ k = 1 ∞ k ⁒ A k ⁒ ( n ) ⁒ [ d d t ⁑ sinh ⁑ ( K ⁒ t / k ) t ] t = n - ( 1 / 24 ) partition-function 𝑛 1 2 superscript subscript π‘˜ 1 π‘˜ subscript 𝐴 π‘˜ 𝑛 subscript delimited-[] derivative 𝑑 𝐾 𝑑 π‘˜ 𝑑 𝑑 𝑛 1 24 {\displaystyle{\displaystyle p\left(n\right)=\frac{1}{\pi\sqrt{2}}\sum_{k=1}^{% \infty}\sqrt{k}A_{k}(n)\*\left[\frac{\mathrm{d}}{\mathrm{d}t}\frac{\sinh\left(% \ifrac{K\sqrt{t}}{k}\right)}{\sqrt{t}}\right]_{t=n-(1/24)}}}
\npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)}

nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k](n)*diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)[t = n -(1/24)], k = 1..infinity)
Error
Error Missing Macro Error - -
27.14.E12 Ξ· ⁑ ( Ο„ ) = e Ο€ ⁒ i ⁒ Ο„ / 12 ⁒ ∏ n = 1 ∞ ( 1 - e 2 ⁒ Ο€ ⁒ i ⁒ n ⁒ Ο„ ) Dedekind-modular-Eta 𝜏 superscript 𝑒 imaginary-unit 𝜏 12 superscript subscript product 𝑛 1 1 superscript 𝑒 2 imaginary-unit 𝑛 𝜏 {\displaystyle{\displaystyle\eta\left(\tau\right)=e^{\pi\mathrm{i}\tau/12}% \prod_{n=1}^{\infty}(1-e^{2\pi\mathrm{i}n\tau})}}
\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau})

Error
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 1]
27.14.E13 Ξ· ⁑ ( Ο„ ) = e Ο€ ⁒ i ⁒ Ο„ / 12 ⁒ f ⁑ ( e 2 ⁒ Ο€ ⁒ i ⁒ Ο„ ) Dedekind-modular-Eta 𝜏 superscript 𝑒 imaginary-unit 𝜏 12 Euler-phi superscript 𝑒 2 imaginary-unit 𝜏 {\displaystyle{\displaystyle\eta\left(\tau\right)=e^{\pi\mathrm{i}\tau/12}% \mathit{f}\left(e^{2\pi\mathrm{i}\tau}\right)}}
\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}}

Error
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]]
Missing Macro Error Failure - Successful [Tested: 1]
27.14.E14 Ξ· ⁑ ( a ⁒ Ο„ + b c ⁒ Ο„ + d ) = Ξ΅ ⁒ ( - i ⁒ ( c ⁒ Ο„ + d ) ) 1 2 ⁒ Ξ· ⁑ ( Ο„ ) Dedekind-modular-Eta π‘Ž 𝜏 𝑏 𝑐 𝜏 𝑑 πœ€ superscript imaginary-unit 𝑐 𝜏 𝑑 1 2 Dedekind-modular-Eta 𝜏 {\displaystyle{\displaystyle\eta\left(\frac{a\tau+b}{c\tau+d}\right)=% \varepsilon(-\mathrm{i}(c\tau+d))^{\frac{1}{2}}\eta\left(\tau\right)}}
\Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau}

Error
DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]]
Missing Macro Error Failure -
Failed [135 / 300]
Result: Complex[0.13319594449577687, -0.32363546143707655]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[Ξ΅, 1], Rule[Ο„, Complex[0, 1]]}

Result: Complex[-0.41002146111087723, -1.4100702726503846]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[Ξ΅, 2], Rule[Ο„, Complex[0, 1]]}

... skip entries to safe data
27.14.E15 5 ⁒ ( f ⁑ ( x 5 ) ) 5 ( f ⁑ ( x ) ) 6 = βˆ‘ n = 0 ∞ p ⁑ ( 5 ⁒ n + 4 ) ⁒ x n 5 superscript Euler-phi superscript π‘₯ 5 5 superscript Euler-phi π‘₯ 6 superscript subscript 𝑛 0 partition-function 5 𝑛 4 superscript π‘₯ 𝑛 {\displaystyle{\displaystyle 5\frac{(\mathit{f}\left(x^{5}\right))^{5}}{(% \mathit{f}\left(x\right))^{6}}=\sum_{n=0}^{\infty}p\left(5n+4\right)x^{n}}}
5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n}
| x | < 1 , | ( x 5 ) | < 1 formulae-sequence π‘₯ 1 superscript π‘₯ 5 1 {\displaystyle{\displaystyle|x|<1,|(x^{5})|<1}}
5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity)
Error
Failure Missing Macro Error Error -
27.14.E18 x ⁒ ∏ n = 1 ∞ ( 1 - x n ) 24 = βˆ‘ n = 1 ∞ Ο„ ⁑ ( n ) ⁒ x n π‘₯ superscript subscript product 𝑛 1 superscript 1 superscript π‘₯ 𝑛 24 superscript subscript 𝑛 1 Ramanujan-tau 𝑛 superscript π‘₯ 𝑛 {\displaystyle{\displaystyle x\prod_{n=1}^{\infty}(1-x^{n})^{24}=\sum_{n=1}^{% \infty}\tau\left(n\right)x^{n}}}
x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}
| x | < 1 π‘₯ 1 {\displaystyle{\displaystyle|x|<1}}
Error
x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 1]