Functions of Number Theory - 27.14 Unrestricted Partitions
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.14.E2 | \EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m}) |
product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity)
|
QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | |
27.14.E3 | \frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n} |
(1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity)
|
Error
|
Failure | Missing Macro Error | Error | - | |
27.14.E6 | \npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right) |
|
nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega(k)))+ nops(partition(n - omega(- k)))), k = 1..infinity)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E7 | n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k} |
|
n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E9 | \npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)} |
|
nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k](n)*diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)[t = n -(1/24)], k = 1..infinity)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E12 | \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau}) |
|
Error
|
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
27.14.E13 | \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}} |
|
Error
|
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
27.14.E14 | \Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau} |
|
Error
|
DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]]
|
Missing Macro Error | Failure | - | Failed [135 / 300]
Result: Complex[0.13319594449577687, -0.32363546143707655]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[Ξ΅, 1], Rule[Ο, Complex[0, 1]]}
Result: Complex[-0.41002146111087723, -1.4100702726503846]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[Ξ΅, 2], Rule[Ο, Complex[0, 1]]}
... skip entries to safe data |
27.14.E15 | 5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n} |
5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity)
|
Error
|
Failure | Missing Macro Error | Error | - | |
27.14.E18 | x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n} |
Error
|
x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |