Zeta and Related Functions - 25.16 Mathematical Applications

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
25.16.E10 1 2 ζ ( 1 - 2 a ) = - B 2 a 4 a 1 2 Riemann-zeta 1 2 𝑎 Bernoulli-number-B 2 𝑎 4 𝑎 {\displaystyle{\displaystyle\frac{1}{2}\zeta\left(1-2a\right)=-\frac{B_{2a}}{4% a}}}
\frac{1}{2}\Riemannzeta@{1-2a} = -\frac{\BernoullinumberB{2a}}{4a}

(1)/(2)*Zeta(1 - 2*a) = -(bernoulli(2*a))/(4*a)
Divide[1,2]*Zeta[1 - 2*a] == -Divide[BernoulliB[2*a],4*a]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
25.16.E13 n = 1 ( h ( n ) n ) 2 = 17 4 ζ ( 4 ) superscript subscript 𝑛 1 superscript 𝑛 𝑛 2 17 4 Riemann-zeta 4 {\displaystyle{\displaystyle\sum_{n=1}^{\infty}\left(\frac{h(n)}{n}\right)^{2}% =\frac{17}{4}\zeta\left(4\right)}}
\sum_{n=1}^{\infty}\left(\frac{h(n)}{n}\right)^{2} = \frac{17}{4}\Riemannzeta@{4}

sum(((h(n))/(n))^(2), n = 1..infinity) = (17)/(4)*Zeta(4)
Sum[(Divide[h[n],n])^(2), {n, 1, Infinity}, GenerateConditions->None] == Divide[17,4]*Zeta[4]
Failure Failure
Failed [10 / 10]
Result: Float(infinity)+Float(infinity)*I
Test Values: {h = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {h = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [10 / 10]
Result: Plus[-4.599873743272337, NSum[Power[E, Times[Complex[0, Rational[1, 3]], Pi]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-4.599873743272337, NSum[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[h, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
25.16.E14 r = 1 k = 1 r 1 r k ( r + k ) = 5 4 ζ ( 3 ) superscript subscript 𝑟 1 superscript subscript 𝑘 1 𝑟 1 𝑟 𝑘 𝑟 𝑘 5 4 Riemann-zeta 3 {\displaystyle{\displaystyle\sum_{r=1}^{\infty}\sum_{k=1}^{r}\frac{1}{rk(r+k)}% =\frac{5}{4}\zeta\left(3\right)}}
\sum_{r=1}^{\infty}\sum_{k=1}^{r}\frac{1}{rk(r+k)} = \frac{5}{4}\Riemannzeta@{3}

sum(sum((1)/(r*k*(r + k)), k = 1..r), r = 1..infinity) = (5)/(4)*Zeta(3)
Sum[Sum[Divide[1,r*k*(r + k)], {k, 1, r}, GenerateConditions->None], {r, 1, Infinity}, GenerateConditions->None] == Divide[5,4]*Zeta[3]
Failure Aborted Error Successful [Tested: 1]