Zeta and Related Functions - 25.14 Lerch’s Transcendent

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
25.14.E2 ζ ( s , a ) = Φ ( 1 , s , a ) Hurwitz-zeta 𝑠 𝑎 Lerch-Phi 1 𝑠 𝑎 {\displaystyle{\displaystyle\zeta\left(s,a\right)=\Phi\left(1,s,a\right)}}
\Hurwitzzeta@{s}{a} = \LerchPhi@{1}{s}{a}
s > 1 𝑠 1 {\displaystyle{\displaystyle\Re s>1}}
Zeta(0, s, a) = LerchPhi(1, s, a)
HurwitzZeta[s, a] == LerchPhi[1, s, a]
Successful Failure - Successful [Tested: 2]
25.14.E3 Li s ( z ) = z Φ ( z , s , 1 ) polylogarithm 𝑠 𝑧 𝑧 Lerch-Phi 𝑧 𝑠 1 {\displaystyle{\displaystyle\mathrm{Li}_{s}\left(z\right)=z\Phi\left(z,s,1% \right)}}
\polylog{s}@{z} = z\LerchPhi@{z}{s}{1}
s > 1 , | z | 1 formulae-sequence 𝑠 1 𝑧 1 {\displaystyle{\displaystyle\Re s>1,|z|\leq 1}}
polylog(s, z) = z*LerchPhi(z, s, 1)
PolyLog[s, z] == z*LerchPhi[z, s, 1]
Successful Successful - Successful [Tested: 10]
25.14.E4 Φ ( z , s , a ) = z m Φ ( z , s , a + m ) + n = 0 m - 1 z n ( a + n ) s Lerch-Phi 𝑧 𝑠 𝑎 superscript 𝑧 𝑚 Lerch-Phi 𝑧 𝑠 𝑎 𝑚 superscript subscript 𝑛 0 𝑚 1 superscript 𝑧 𝑛 superscript 𝑎 𝑛 𝑠 {\displaystyle{\displaystyle\Phi\left(z,s,a\right)=z^{m}\Phi\left(z,s,a+m% \right)+\sum_{n=0}^{m-1}\frac{z^{n}}{(a+n)^{s}}}}
\LerchPhi@{z}{s}{a} = z^{m}\LerchPhi@{z}{s}{a+m}+\sum_{n=0}^{m-1}\frac{z^{n}}{(a+n)^{s}}

LerchPhi(z, s, a) = (z)^(m)* LerchPhi(z, s, a + m)+ sum(((z)^(n))/((a + n)^(s)), n = 0..m - 1)
LerchPhi[z, s, a] == (z)^(m)* LerchPhi[z, s, a + m]+ Sum[Divide[(z)^(n),(a + n)^(s)], {n, 0, m - 1}, GenerateConditions->None]
Failure Successful
Failed [6 / 300]
Result: .27656730e-2-.27656730e-2*I
Test Values: {a = -3/2, s = -2, z = 1/2*3^(1/2)+1/2*I, m = 2}

Result: 0.+.228647547e-1*I
Test Values: {a = -3/2, s = -2, z = -1/2+1/2*I*3^(1/2), m = 2}

... skip entries to safe data
Successful [Tested: 300]
25.14.E5 Φ ( z , s , a ) = 1 Γ ( s ) 0 x s - 1 e - a x 1 - z e - x d x Lerch-Phi 𝑧 𝑠 𝑎 1 Euler-Gamma 𝑠 superscript subscript 0 superscript 𝑥 𝑠 1 superscript 𝑒 𝑎 𝑥 1 𝑧 superscript 𝑒 𝑥 𝑥 {\displaystyle{\displaystyle\Phi\left(z,s,a\right)=\frac{1}{\Gamma\left(s% \right)}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1-ze^{-x}}\mathrm{d}x}}
\LerchPhi@{z}{s}{a} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1-ze^{-x}}\diff{x}
s > 0 , a > 0 formulae-sequence 𝑠 0 𝑎 0 {\displaystyle{\displaystyle\Re s>0,\Re a>0}}
LerchPhi(x + y*I, s, a) = (1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(1 -(x + y*I)*exp(- x)), x = 0..infinity)
LerchPhi[x + y*I, s, a] == Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],1 -(x + y*I)*Exp[- x]], {x, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out
Failed [162 / 162]
Result: Plus[Complex[0.29818646299224294, -0.45270555517796296], Times[-1.1283791670955126, NIntegrate[Complex[0.15484016278663867, -0.07789552790412994]
Test Values: {1.5, 0, DirectedInfinity[1]}]]], {Rule[a, 1.5], Rule[s, 1.5], Rule[x, 1.5], Rule[y, -1.5], Rule[z, Rational[1, 2]]}

Result: Plus[Complex[0.29818646299224244, 0.45270555517796246], Times[-1.1283791670955126, NIntegrate[Complex[0.15484016278663867, 0.07789552790412994]
Test Values: {1.5, 0, DirectedInfinity[1]}]]], {Rule[a, 1.5], Rule[s, 1.5], Rule[x, 1.5], Rule[y, 1.5], Rule[z, Rational[1, 2]]}

... skip entries to safe data
25.14.E6 Φ ( z , s , a ) = 1 2 a - s + 0 z x ( a + x ) s d x - 2 0 sin ( x ln z - s arctan ( x / a ) ) ( a 2 + x 2 ) s / 2 ( e 2 π x - 1 ) d x Lerch-Phi 𝑧 𝑠 𝑎 1 2 superscript 𝑎 𝑠 superscript subscript 0 superscript 𝑧 𝑥 superscript 𝑎 𝑥 𝑠 𝑥 2 superscript subscript 0 𝑥 𝑧 𝑠 𝑥 𝑎 superscript superscript 𝑎 2 superscript 𝑥 2 𝑠 2 superscript 𝑒 2 𝜋 𝑥 1 𝑥 {\displaystyle{\displaystyle\Phi\left(z,s,a\right)=\frac{1}{2}a^{-s}+\int_{0}^% {\infty}\frac{z^{x}}{(a+x)^{s}}\mathrm{d}x-2\int_{0}^{\infty}\frac{\sin\left(x% \ln z-s\operatorname{arctan}\left(x/a\right)\right)}{(a^{2}+x^{2})^{s/2}(e^{2% \pi x}-1)}\mathrm{d}x}}
\LerchPhi@{z}{s}{a} = \frac{1}{2}a^{-s}+\int_{0}^{\infty}\frac{z^{x}}{(a+x)^{s}}\diff{x}-2\int_{0}^{\infty}\frac{\sin@{x\ln@@{z}-s\atan@{x/a}}}{(a^{2}+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}
s > 0 , | z | < 1 , s > 1 , | z | = 1 , a > 0 formulae-sequence 𝑠 0 formulae-sequence 𝑧 1 formulae-sequence 𝑠 1 formulae-sequence 𝑧 1 𝑎 0 {\displaystyle{\displaystyle\Re s>0,|z|<1,\Re s>1,|z|=1,\Re a>0}}
LerchPhi(x + y*I, s, a) = (1)/(2)*(a)^(- s)+ int(((x + y*I)^(x))/((a + x)^(s)), x = 0..infinity)- 2*int((sin(x*ln(x + y*I)- s*arctan(x/a)))/(((a)^(2)+ (x)^(2))^(s/2)*(exp(2*Pi*x)- 1)), x = 0..infinity)
LerchPhi[x + y*I, s, a] == Divide[1,2]*(a)^(- s)+ Integrate[Divide[(x + y*I)^(x),(a + x)^(s)], {x, 0, Infinity}, GenerateConditions->None]- 2*Integrate[Divide[Sin[x*Log[x + y*I]- s*ArcTan[x/a]],((a)^(2)+ (x)^(2))^(s/2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out