Weierstrass Elliptic and Modular Functions - 23.8 Trigonometric Series and Products

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.8.E5 η 1 = π 2 2 ω 1 ( 1 6 + n = 1 csc 2 ( n π ω 3 ω 1 ) ) subscript 𝜂 1 superscript 𝜋 2 2 subscript 𝜔 1 1 6 superscript subscript 𝑛 1 2 𝑛 𝜋 subscript 𝜔 3 subscript 𝜔 1 {\displaystyle{\displaystyle\eta_{1}=\frac{\pi^{2}}{2\omega_{1}}\left(\frac{1}% {6}+\sum_{n=1}^{\infty}{\csc^{2}}\left(\frac{n\pi\omega_{3}}{\omega_{1}}\right% )\right)}}
\eta_{1} = \frac{\pi^{2}}{2\omega_{1}}\left(\frac{1}{6}+\sum_{n=1}^{\infty}\csc^{2}@{\frac{n\pi\omega_{3}}{\omega_{1}}}\right)

eta[1] = ((Pi)^(2))/(2*omega[1])*((1)/(6)+ sum((csc((n*Pi*omega[3])/(omega[1])))^(2), n = 1..infinity))
Subscript[\[Eta], 1] == Divide[(Pi)^(2),2*Subscript[\[Omega], 1]]*(Divide[1,6]+ Sum[(Csc[Divide[n*Pi*Subscript[\[Omega], 3],Subscript[\[Omega], 1]]])^(2), {n, 1, Infinity}, GenerateConditions->None])
Failure Failure Skipped - Because timed out Skipped - Because timed out