Weierstrass Elliptic and Modular Functions - 23.20 Mathematical Applications
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
23.20#Ex1 | x_{3} = m^{2}-x_{1}-x_{2} |
|
x[3] = (m)^(2)- x[1]- x[2] |
Subscript[x, 3] == (m)^(2)- Subscript[x, 1]- Subscript[x, 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.20#Ex2 | y_{3} = -m(x_{3}-x_{1})-y_{1} |
|
y[3] = - m*(x[3]- x[1])- y[1] |
Subscript[y, 3] == - m*(Subscript[x, 3]- Subscript[x, 1])- Subscript[y, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.20.E5 | v^{8}(1+u^{8}) = 4u^{4} |
(v)^(8)*(1 + (u)^(8)) = 4*(u)^(4) |
(v)^(8)*(1 + (u)^(8)) == 4*(u)^(4) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
23.20.E6 | u^{4}-v^{4}+2uv(1-u^{2}v^{2}) = 0 |
(u)^(4)- (v)^(4)+ 2*u*v*(1 - (u)^(2)* (v)^(2)) = 0 |
(u)^(4)- (v)^(4)+ 2*u*v*(1 - (u)^(2)* (v)^(2)) == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
23.20.E7 | u^{6}-v^{6}+5u^{2}v^{2}(u^{2}-v^{2})+4uv(1-u^{4}v^{4}) = 0 |
(u)^(6)- (v)^(6)+ 5*(u)^(2)* (v)^(2)*((u)^(2)- (v)^(2))+ 4*u*v*(1 - (u)^(4)* (v)^(4)) = 0 |
(u)^(6)- (v)^(6)+ 5*(u)^(2)* (v)^(2)*((u)^(2)- (v)^(2))+ 4*u*v*(1 - (u)^(4)* (v)^(4)) == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
23.20.E8 | (1-u^{8})(1-v^{8}) = (1-uv)^{8} |
(1 - (u)^(8))*(1 - (v)^(8)) = (1 - u*v)^(8) |
(1 - (u)^(8))*(1 - (v)^(8)) == (1 - u*v)^(8) |
Skipped - no semantic math | Skipped - no semantic math | - | - |