Weierstrass Elliptic and Modular Functions - 23.18 Modular Transformations

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.18.E3 Ξ» ⁑ ( π’œ ⁒ Ο„ ) = Ξ» ⁑ ( Ο„ ) modular-Lambda π’œ 𝜏 modular-Lambda 𝜏 {\displaystyle{\displaystyle\lambda\left(\mathcal{A}\tau\right)=\lambda\left(% \tau\right)}}
\modularlambdatau@{\mathcal{A}\tau} = \modularlambdatau@{\tau}

Error
ModularLambda[A*\[Tau]] == ModularLambda[\[Tau]]
Missing Macro Error Failure -
Failed [10 / 100]
Result: Complex[-5.551115123125783*^-17, -21.100969873679457]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-4.440892098500626*^-16, -21.100969873679432]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.18.E4 J ⁑ ( π’œ ⁒ Ο„ ) = J ⁑ ( Ο„ ) Kleins-invariant-modular-J π’œ 𝜏 Kleins-invariant-modular-J 𝜏 {\displaystyle{\displaystyle J\left(\mathcal{A}\tau\right)=J\left(\tau\right)}}
\KleincompinvarJtau@{\mathcal{A}\tau} = \KleincompinvarJtau@{\tau}

Error
KleinInvariantJ[A*\[Tau]] == KleinInvariantJ[\[Tau]]
Missing Macro Error Failure -
Failed [8 / 100]
Result: Complex[71.08223570333668, 2.1851275073468844*^-14]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-71.08223570333656, -1.2998925520285436*^-13]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο„, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.18.E5 Ξ· ⁑ ( π’œ ⁒ Ο„ ) = Ξ΅ ⁒ ( π’œ ) ⁒ ( - i ⁒ ( c ⁒ Ο„ + d ) ) 1 / 2 ⁒ Ξ· ⁑ ( Ο„ ) Dedekind-modular-Eta π’œ 𝜏 πœ€ π’œ superscript 𝑖 𝑐 𝜏 𝑑 1 2 Dedekind-modular-Eta 𝜏 {\displaystyle{\displaystyle\eta\left(\mathcal{A}\tau\right)=\varepsilon(% \mathcal{A})\left(-i(c\tau+d)\right)^{1/2}\eta\left(\tau\right)}}
\Dedekindeta@{\mathcal{A}\tau} = \varepsilon(\mathcal{A})\left(-i(c\tau+d)\right)^{1/2}\Dedekindeta@{\tau}

Error
DedekindEta[A*\[Tau]] == \[CurlyEpsilon][A]*(- I*(c*\[Tau]+ d))^(1/2)* DedekindEta[\[Tau]]
Missing Macro Error Failure -
Failed [180 / 300]
Result: Complex[0.11245781368984653, 0.4581664384510718]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ΅, 1], Rule[Ο„, Complex[0, 1]]}

Result: Complex[-0.5688147076679476, 1.020829457922046]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ΅, 2], Rule[Ο„, Complex[0, 1]]}

... skip entries to safe data
23.18.E6 Ξ΅ ⁒ ( π’œ ) = exp ⁑ ( Ο€ ⁒ i ⁒ ( a + d 12 ⁒ c + s ⁒ ( - d , c ) ) ) πœ€ π’œ πœ‹ 𝑖 π‘Ž 𝑑 12 𝑐 𝑠 𝑑 𝑐 {\displaystyle{\displaystyle\varepsilon(\mathcal{A})=\exp\left(\pi i\left(% \frac{a+d}{12c}+s(-d,c)\right)\right)}}
\varepsilon(\mathcal{A}) = \exp@{\pi i\left(\frac{a+d}{12c}+s(-d,c)\right)}

varepsilon(A) = exp(Pi*I*((a + d)/(12*c)+ s(- d , c)))
\[CurlyEpsilon][A] == Exp[Pi*I*(Divide[a + d,12*c]+ s[- d , c])]
Failure Failure Error Error
23.18.E7 s ⁒ ( d , c ) = βˆ‘ r = 1 c - 1 r c ⁒ ( d ⁒ r c - ⌊ d ⁒ r c βŒ‹ - 1 2 ) , 𝑠 𝑑 𝑐 superscript subscript π‘Ÿ 1 𝑐 1 π‘Ÿ 𝑐 𝑑 π‘Ÿ 𝑐 𝑑 π‘Ÿ 𝑐 1 2 {\displaystyle{\displaystyle s(d,c)=\sum_{r=1}^{c-1}\frac{r}{c}\left(\frac{dr}% {c}-\left\lfloor\frac{dr}{c}\right\rfloor-\frac{1}{2}\right),}}
s(d,c) = \sum_{r=1}^{c-1}\frac{r}{c}\left(\frac{dr}{c}-\floor{\frac{dr}{c}}-\frac{1}{2}\right),
c > 0 𝑐 0 {\displaystyle{\displaystyle c>0}}
s(d , c) = sum((r)/(c)*((d*r)/(c)- floor((d*r)/(c))-(1)/(2)), r = 1..c - 1)
s[d , c] == Sum[Divide[r,c]*(Divide[d*r,c]- Floor[Divide[d*r,c]]-Divide[1,2]), {r, 1, c - 1}, GenerateConditions->None]
Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -