Multidimensional Theta Functions - 21.7 Riemann Surfaces

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.7.E1 P โข ( ฮป , ฮผ ) = 0 ๐‘ƒ ๐œ† ๐œ‡ 0 {\displaystyle{\displaystyle P(\lambda,\mu)=0}}
P(\lambda,\mu) = 0

P(lambda , mu) = 0
P[\[Lambda], \[Mu]] == 0
Skipped - no semantic math Skipped - no semantic math - -
21.7.E11 ฮผ 2 = Q โข ( ฮป ) superscript ๐œ‡ 2 ๐‘„ ๐œ† {\displaystyle{\displaystyle\mu^{2}=Q(\lambda)}}
\mu^{2} = Q(\lambda)

(mu)^(2) = Q(lambda)
\[Mu]^(2) == Q[\[Lambda]]
Skipped - no semantic math Skipped - no semantic math - -
21.7.E13 ๐œผ โข ( T ) = ๐œผ โข ( T c ) ๐œผ ๐‘‡ ๐œผ superscript ๐‘‡ ๐‘ {\displaystyle{\displaystyle\boldsymbol{{\eta}}(T)=\boldsymbol{{\eta}}(T^{c})}}
\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})

eta(T) = eta((T)^(c))
\[Eta][T] == \[Eta][(T)^(c)]
Skipped - no semantic math Skipped - no semantic math - -