Multidimensional Theta Functions - 21.7 Riemann Surfaces
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
21.7.E1 | P(\lambda,\mu) = 0 |
|
P(lambda , mu) = 0 |
P[\[Lambda], \[Mu]] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
21.7.E11 | \mu^{2} = Q(\lambda) |
|
(mu)^(2) = Q(lambda) |
\[Mu]^(2) == Q[\[Lambda]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
21.7.E13 | \boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c}) |
|
eta(T) = eta((T)^(c)) |
\[Eta][T] == \[Eta][(T)^(c)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |