Multidimensional Theta Functions - 21.6 Products

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.6.E6 ฮธ โก ( ๐ฑ + ๐ฒ + ๐ฎ + ๐ฏ 2 | ๐›€ ) โข ฮธ โก ( ๐ฑ + ๐ฒ - ๐ฎ - ๐ฏ 2 | ๐›€ ) โข ฮธ โก ( ๐ฑ - ๐ฒ + ๐ฎ - ๐ฏ 2 | ๐›€ ) โข ฮธ โก ( ๐ฑ - ๐ฒ - ๐ฎ + ๐ฏ 2 | ๐›€ ) = 1 2 g โข โˆ‘ ๐œถ โˆˆ 1 2 โข โ„ค g / โ„ค g โˆ‘ ๐œท โˆˆ 1 2 โข โ„ค g / โ„ค g e 2 โข ฯ€ โข i โข ( 2 โข ๐œถ โ‹… ๐›€ โ‹… ๐œถ + ๐œถ โ‹… [ ๐ฑ + ๐ฒ + ๐ฎ + ๐ฏ ] ) โข ฮธ โก ( ๐ฑ + ๐›€ โข ๐œถ + ๐œท | ๐›€ ) โข ฮธ โก ( ๐ฒ + ๐›€ โข ๐œถ + ๐œท | ๐›€ ) โข ฮธ โก ( ๐ฎ + ๐›€ โข ๐œถ + ๐œท | ๐›€ ) โข ฮธ โก ( ๐ฏ + ๐›€ โข ๐œถ + ๐œท | ๐›€ ) Riemann-theta ๐ฑ ๐ฒ ๐ฎ ๐ฏ 2 ๐›€ Riemann-theta ๐ฑ ๐ฒ ๐ฎ ๐ฏ 2 ๐›€ Riemann-theta ๐ฑ ๐ฒ ๐ฎ ๐ฏ 2 ๐›€ Riemann-theta ๐ฑ ๐ฒ ๐ฎ ๐ฏ 2 ๐›€ 1 superscript 2 ๐‘” subscript ๐œถ 1 2 ๐‘” ๐‘” subscript ๐œท 1 2 ๐‘” ๐‘” superscript ๐‘’ 2 ๐œ‹ ๐‘– โ‹… 2 ๐œถ ๐›€ ๐œถ โ‹… ๐œถ delimited-[] ๐ฑ ๐ฒ ๐ฎ ๐ฏ Riemann-theta ๐ฑ ๐›€ ๐œถ ๐œท ๐›€ Riemann-theta ๐ฒ ๐›€ ๐œถ ๐œท ๐›€ Riemann-theta ๐ฎ ๐›€ ๐œถ ๐œท ๐›€ Riemann-theta ๐ฏ ๐›€ ๐œถ ๐œท ๐›€ {\displaystyle{\displaystyle\theta\left(\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}% +\mathbf{v}}{2}\middle|\boldsymbol{{\Omega}}\right)\theta\left(\frac{\mathbf{x% }+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}\middle|\boldsymbol{{\Omega}}\right)% \theta\left(\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}\middle|% \boldsymbol{{\Omega}}\right)\theta\left(\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}% +\mathbf{v}}{2}\middle|\boldsymbol{{\Omega}}\right)=\frac{1}{2^{g}}\sum_{% \boldsymbol{{\alpha}}\in\frac{1}{2}{\mathbb{Z}^{g}}/{\mathbb{Z}^{g}}}\,\sum_{% \boldsymbol{{\beta}}\in\frac{1}{2}{\mathbb{Z}^{g}}/{\mathbb{Z}^{g}}}e^{2\pi i% \left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha% }}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]% \right)}\*\theta\left(\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+% \boldsymbol{{\beta}}\middle|\boldsymbol{{\Omega}}\right)\theta\left(\mathbf{y}% +\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}\middle|% \boldsymbol{{\Omega}}\right)\theta\left(\mathbf{u}+\boldsymbol{{\Omega}}% \boldsymbol{{\alpha}}+\boldsymbol{{\beta}}\middle|\boldsymbol{{\Omega}}\right)% \theta\left(\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{% {\beta}}\middle|\boldsymbol{{\Omega}}\right)}}
\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}

RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega),  = ..infinity),  = ..infinity)
Error
Missing Macro Error Missing Macro Error - -