Multidimensional Theta Functions - 21.3 Symmetry and Quasi-Periodicity

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.3.E1 ΞΈ ⁑ ( - 𝐳 | 𝛀 ) = ΞΈ ⁑ ( 𝐳 | 𝛀 ) Riemann-theta 𝐳 𝛀 Riemann-theta 𝐳 𝛀 {\displaystyle{\displaystyle\theta\left(-\mathbf{z}\middle|\boldsymbol{{\Omega% }}\right)=\theta\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)}}
\Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}

RiemannTheta(- z, Omega) = RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -
21.3.E2 ΞΈ ⁑ ( 𝐳 + 𝐦 1 | 𝛀 ) = ΞΈ ⁑ ( 𝐳 | 𝛀 ) Riemann-theta 𝐳 subscript 𝐦 1 𝛀 Riemann-theta 𝐳 𝛀 {\displaystyle{\displaystyle\theta\left(\mathbf{z}+\mathbf{m}_{1}\middle|% \boldsymbol{{\Omega}}\right)=\theta\left(\mathbf{z}\middle|\boldsymbol{{\Omega% }}\right)}}
\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}

RiemannTheta(z + m[1], Omega) = RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -
21.3.E3 ΞΈ ⁑ ( 𝐳 + 𝐦 1 + 𝛀 ⁒ 𝐦 2 | 𝛀 ) = e - 2 ⁒ Ο€ ⁒ i ⁒ ( 1 2 ⁒ 𝐦 2 β‹… 𝛀 β‹… 𝐦 2 + 𝐦 2 β‹… 𝐳 ) ⁒ ΞΈ ⁑ ( 𝐳 | 𝛀 ) Riemann-theta 𝐳 subscript 𝐦 1 𝛀 subscript 𝐦 2 𝛀 superscript 𝑒 2 πœ‹ 𝑖 β‹… 1 2 subscript 𝐦 2 𝛀 subscript 𝐦 2 β‹… subscript 𝐦 2 𝐳 Riemann-theta 𝐳 𝛀 {\displaystyle{\displaystyle\theta\left(\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{% {\Omega}}\mathbf{m}_{2}\middle|\boldsymbol{{\Omega}}\right)=e^{-2\pi i\left(% \frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf% {m}_{2}\cdot\mathbf{z}\right)}\theta\left(\mathbf{z}\middle|\boldsymbol{{% \Omega}}\right)}}
\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}

RiemannTheta(z + m[1]+ Omega*m[2], Omega) = exp(- 2*Pi*I*((1)/(2)*m[2] * Omega * m[2]+ m[2] * z))*RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -