Theta Functions - 20.13 Physical Applications

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
20.13.E2 θ / t = α 2 θ / z 2 partial-derivative 𝜃 𝑡 𝛼 partial-derivative 𝜃 𝑧 2 {\displaystyle{\displaystyle\ifrac{\partial\theta}{\partial t}=\alpha\ifrac{{% \partial}^{2}\theta}{{\partial z}^{2}}}}
\ipderiv{\theta}{t} = \alpha\ipderiv[2]{\theta}{z}

diff(theta, t) = alpha*diff(theta, [z$(2)])
D[\[Theta], t] == \[Alpha]*D[\[Theta], {z, 2}]
Successful Successful - Successful [Tested: 300]