Theta Functions - 20.11 Generalizations and Analogs

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
20.11.E5 F 1 2 ( 1 2 , 1 2 ; 1 ; k 2 ) = θ 3 2 ( 0 | τ ) Gauss-hypergeometric-F-as-2F1 1 2 1 2 1 superscript 𝑘 2 Jacobi-theta-tau 3 2 0 𝜏 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(\tfrac{1}{2},\tfrac{1}{2};1;k^{% 2}\right)={\theta_{3}^{2}}\left(0\middle|\tau\right)}}
\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} = \Jacobithetatau{3}^{2}@{0}{\tau}

hypergeom([(1)/(2),(1)/(2)], [1], ((JacobiTheta2(0,exp(I*Pi*tau)))^(2)/(JacobiTheta3(0,exp(I*Pi*tau)))^(2))^(2)) = (JacobiTheta3(0,exp(I*Pi*tau)))^(2)
HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, ((EllipticTheta[2, 0, Exp[I*Pi*(\[Tau])]])^(2)/(EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2))^(2)] == (EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2)
Failure Failure Error Successful [Tested: 10]