Elliptic Integrals - 19.27 Asymptotic Approximations and Expansions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.27#Ex1 a = 1 2 ⁒ ( x + y ) π‘Ž 1 2 π‘₯ 𝑦 {\displaystyle{\displaystyle a=\tfrac{1}{2}(x+y)}}
a = \tfrac{1}{2}(x+y)

a = (1)/(2)*(x + y)
a == Divide[1,2]*(x + y)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex2 b = 1 2 ⁒ ( y + z ) 𝑏 1 2 𝑦 𝑧 {\displaystyle{\displaystyle b=\tfrac{1}{2}(y+z)}}
b = \tfrac{1}{2}(y+z)

b = (1)/(2)*(y +(x + y*I))
b == Divide[1,2]*(y +(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex3 c = 1 3 ⁒ ( x + y + z ) 𝑐 1 3 π‘₯ 𝑦 𝑧 {\displaystyle{\displaystyle c=\tfrac{1}{3}(x+y+z)}}
c = \tfrac{1}{3}(x+y+z)

c = (1)/(3)*(x + y +(x + y*I))
c == Divide[1,3]*(x + y +(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex4 f = ( x ⁒ y ⁒ z ) 1 / 3 𝑓 superscript π‘₯ 𝑦 𝑧 1 3 {\displaystyle{\displaystyle f=(xyz)^{1/3}}}
f = (xyz)^{1/3}

f = (x*y*(x + y*I))^(1/3)
f == (x*y*(x + y*I))^(1/3)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex5 g = ( x ⁒ y ) 1 / 2 𝑔 superscript π‘₯ 𝑦 1 2 {\displaystyle{\displaystyle g=(xy)^{1/2}}}
g = (xy)^{1/2}

g = (x*y)^(1/2)
g == (x*y)^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex6 h = ( y ⁒ z ) 1 / 2 β„Ž superscript 𝑦 𝑧 1 2 {\displaystyle{\displaystyle h=(yz)^{1/2}}}
h = (yz)^{1/2}

h = (y*(x + y*I))^(1/2)
h == (y*(x + y*I))^(1/2)
Skipped - no semantic math Skipped - no semantic math - -