Orthogonal Polynomials - 18.5 Explicit Representations

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.5.E1 T n ⁑ ( x ) = cos ⁑ ( n ⁒ ΞΈ ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 𝑛 πœƒ {\displaystyle{\displaystyle T_{n}\left(x\right)=\cos\left(n\theta\right)}}
\ChebyshevpolyT{n}@{x} = \cos@{n\theta}

ChebyshevT(n, x) = cos(n*theta)
ChebyshevT[n, x] == Cos[n*\[Theta]]
Failure Failure
Failed [90 / 90]
Result: .7694569811+.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 3/2, n = 1}

Result: 3.747751686+1.159954891*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 3/2, n = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[0.7694569809427748, 0.3969495502290325]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.747751685467572, 1.1599548913509004]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
18.5.E2 U n ⁑ ( x ) = ( sin ⁑ ( n + 1 ) ⁒ ΞΈ ) / sin ⁑ ΞΈ Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 𝑛 1 πœƒ πœƒ {\displaystyle{\displaystyle U_{n}\left(x\right)=\ifrac{(\sin(n+1)\theta)}{% \sin\theta}}}
\ChebyshevpolyU{n}@{x} = \ifrac{(\sin@@{(n+1)\theta})}{\sin@@{\theta}}

ChebyshevU(n, x) = (sin((n + 1)*theta))/(sin(theta))
ChebyshevU[n, x] == Divide[Sin[(n + 1)*\[Theta]],Sin[\[Theta]]]
Failure Failure
Failed [90 / 90]
Result: 1.538913962+.7938991006*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 3/2, n = 1}

Result: 7.495503373+2.319909783*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 3/2, n = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[1.5389139618855496, 0.7938991004580651]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[7.495503370935143, 2.3199097827018003]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
18.5.E6 L n ( Ξ± ) ⁑ ( 1 x ) = ( - 1 ) n n ! ⁒ x n + Ξ± + 1 ⁒ e 1 / x ⁒ d n d x n ⁑ ( x - Ξ± - 1 ⁒ e - 1 / x ) Laguerre-polynomial-L 𝛼 𝑛 1 π‘₯ superscript 1 𝑛 𝑛 superscript π‘₯ 𝑛 𝛼 1 superscript 𝑒 1 π‘₯ derivative π‘₯ 𝑛 superscript π‘₯ 𝛼 1 superscript 𝑒 1 π‘₯ {\displaystyle{\displaystyle L^{(\alpha)}_{n}\left(\frac{1}{x}\right)=\frac{(-% 1)^{n}}{n!}x^{n+\alpha+1}e^{\ifrac{1}{x}}\frac{{\mathrm{d}}^{n}}{{\mathrm{d}x}% ^{n}}\left(x^{-\alpha-1}e^{-\ifrac{1}{x}}\right)}}
\LaguerrepolyL[\alpha]{n}@{\frac{1}{x}} = \frac{(-1)^{n}}{n!}x^{n+\alpha+1}e^{\ifrac{1}{x}}\deriv[n]{}{x}\left(x^{-\alpha-1}e^{-\ifrac{1}{x}}\right)

LaguerreL(n, alpha, (1)/(x)) = ((- 1)^(n))/(factorial(n))*(x)^(n + alpha + 1)* exp((1)/(x))*diff((x)^(- alpha - 1)* exp(-(1)/(x)), [x$(n)])
LaguerreL[n, \[Alpha], Divide[1,x]] == Divide[(- 1)^(n),(n)!]*(x)^(n + \[Alpha]+ 1)* Exp[Divide[1,x]]*D[(x)^(- \[Alpha]- 1)* Exp[-Divide[1,x]], {x, n}]
Missing Macro Error Failure -
Failed [24 / 27]
Result: Plus[1.8333333333333335, Times[1.9477340410546757, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, , Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], 1.5, []], Times[Plus[-1, Times[-1, ], 1], Plus[, Times[-1, 1], Times[-2, , 1.5], Times[-3, Power[, 2], 1.5], Times[2, 1, 1.5], Times[3, , 1, 1.5], Times[-1, 1.5], Times[2, 1.5, 1.5], Times[2, , 1.5, 1.5]], [Plus[1, ]]], Times[-1, Plus[Times[-1, ], 1, 1.5], Plus[1, , Times[-1, 1], Times[-4, 1.5], Times[-7, , 1.5], Times[-3, Power[, 2], 1.5], Times[4, 1, 1.5], Times[3, , 1, 1.5], Times[2, 1.5, 1.5], Times[, 1.5, 1.5]], [Plus[2, ]]], Times[Plus[2, ], 1.5, Plus[-1, Times[-1, ], 1, 1.5], Plus[Times[-1, ], 1, 1.5], [Plus[3, ]]]], 0], Equal[[-1], 0], Equal[[0], 0], Equal[[1], Times[Power[E, Times[-1, Power[1.5, -1]]], Binomial[Plus[-1, Times[-1, 1.5]], 1]]]}]][2.0]]], {Rule[n, 1], Rule[x, 1.5], Rule[α, 1.5]}

Result: Plus[2.2638888888888893, Times[-1.9477340410546757, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, , Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], 1.5, []], Times[Plus[-1, Times[-1, ], 2], Plus[, Times[-1, 2], Times[-2, , 1.5], Times[-3, Power[, 2], 1.5], Times[2, 2, 1.5], Times[3, , 2, 1.5], Times[-1, 1.5], Times[2, 1.5, 1.5], Times[2, , 1.5, 1.5]], [Plus[1, ]]], Times[-1, Plus[Times[-1, ], 2, 1.5], Plus[1, , Times[-1, 2], Times[-4, 1.5], Times[-7, , 1.5], Times[-3, Power[, 2], 1.5], Times[4, 2, 1.5], Times[3, , 2, 1.5], Times[2, 1.5, 1.5], Times[, 1.5, 1.5]], [Plus[2, ]]], Times[Plus[2, ], 1.5, Plus[-1, Times[-1, ], 2, 1.5], Plus[Times[-1, ], 2, 1.5], [Plus[3, ]]]], 0], Equal[[-1], 0], Equal[[0], 0], Equal[[1], Times[Power[E, Times[-1, Power[1.5, -1]]], Binomial[Plus[-1, Times[-1, 1.5]], 2]]]}]][3.0]]], {Rule[n, 2], Rule[x, 1.5], Rule[α, 1.5]}

... skip entries to safe data
18.5.E7 P n ( Ξ± , Ξ² ) ⁑ ( x ) = βˆ‘ β„“ = 0 n ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( Ξ± + β„“ + 1 ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ ( x - 1 2 ) β„“ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript subscript β„“ 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 β„“ Pochhammer 𝛼 β„“ 1 𝑛 β„“ β„“ 𝑛 β„“ superscript π‘₯ 1 2 β„“ {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\sum_{\ell=0% }^{n}\frac{{\left(n+\alpha+\beta+1\right)_{\ell}}{\left(\alpha+\ell+1\right)_{% n-\ell}}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell}}}
\JacobipolyP{\alpha}{\beta}{n}@{x} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{n+\alpha+\beta+1}{\ell}\Pochhammersym{\alpha+\ell+1}{n-\ell}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell}

JacobiP(n, alpha, beta, x) = sum((pochhammer(n + alpha + beta + 1, ell)*pochhammer(alpha + ell + 1, n - ell))/(factorial(ell)*factorial(n - ell))*((x - 1)/(2))^(ell), ell = 0..n)
JacobiP[n, \[Alpha], \[Beta], x] == Sum[Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, \[ScriptL]]*Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(Divide[x - 1,2])^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None]
Successful Successful - Successful [Tested: 81]
18.5.E7 βˆ‘ β„“ = 0 n ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( Ξ± + β„“ + 1 ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ ( x - 1 2 ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 2 ⁑ ( - n , n + Ξ± + Ξ² + 1 Ξ± + 1 ; 1 - x 2 ) superscript subscript β„“ 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 β„“ Pochhammer 𝛼 β„“ 1 𝑛 β„“ β„“ 𝑛 β„“ superscript π‘₯ 1 2 β„“ Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 π‘₯ 2 {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(n+\alpha+\beta+1% \right)_{\ell}}{\left(\alpha+\ell+1\right)_{n-\ell}}}{\ell!\;(n-\ell)!}\left(% \frac{x-1}{2}\right)^{\ell}=\frac{{\left(\alpha+1\right)_{n}}}{n!}{{}_{2}F_{1}% }\left({-n,n+\alpha+\beta+1\atop\alpha+1};\frac{1-x}{2}\right)}}
\sum_{\ell=0}^{n}\frac{\Pochhammersym{n+\alpha+\beta+1}{\ell}\Pochhammersym{\alpha+\ell+1}{n-\ell}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}\genhyperF{2}{1}@@{-n,n+\alpha+\beta+1}{\alpha+1}{\frac{1-x}{2}}

sum((pochhammer(n + alpha + beta + 1, ell)*pochhammer(alpha + ell + 1, n - ell))/(factorial(ell)*factorial(n - ell))*((x - 1)/(2))^(ell), ell = 0..n) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n , n + alpha + beta + 1], [alpha + 1], (1 - x)/(2))
Sum[Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, \[ScriptL]]*Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(Divide[x - 1,2])^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n , n + \[Alpha]+ \[Beta]+ 1}, {\[Alpha]+ 1}, Divide[1 - x,2]]
Successful Successful - Successful [Tested: 81]
18.5.E8 P n ( Ξ± , Ξ² ) ⁑ ( x ) = 2 - n ⁒ βˆ‘ β„“ = 0 n ( n + Ξ± β„“ ) ⁒ ( n + Ξ² n - β„“ ) ⁒ ( x - 1 ) n - β„“ ⁒ ( x + 1 ) β„“ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 2 𝑛 superscript subscript β„“ 0 𝑛 binomial 𝑛 𝛼 β„“ binomial 𝑛 𝛽 𝑛 β„“ superscript π‘₯ 1 𝑛 β„“ superscript π‘₯ 1 β„“ {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=2^{-n}\sum_{% \ell=0}^{n}\genfrac{(}{)}{0.0pt}{}{n+\alpha}{\ell}\genfrac{(}{)}{0.0pt}{}{n+% \beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell}}}
\JacobipolyP{\alpha}{\beta}{n}@{x} = 2^{-n}\sum_{\ell=0}^{n}\binom{n+\alpha}{\ell}\binom{n+\beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell}

JacobiP(n, alpha, beta, x) = (2)^(- n)* sum(binomial(n + alpha,ell)*binomial(n + beta,n - ell)*(x - 1)^(n - ell)*(x + 1)^(ell), ell = 0..n)
JacobiP[n, \[Alpha], \[Beta], x] == (2)^(- n)* Sum[Binomial[n + \[Alpha],\[ScriptL]]*Binomial[n + \[Beta],n - \[ScriptL]]*(x - 1)^(n - \[ScriptL])*(x + 1)^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 81] Successful [Tested: 81]
18.5.E8 2 - n ⁒ βˆ‘ β„“ = 0 n ( n + Ξ± β„“ ) ⁒ ( n + Ξ² n - β„“ ) ⁒ ( x - 1 ) n - β„“ ⁒ ( x + 1 ) β„“ = ( Ξ± + 1 ) n n ! ⁒ ( x + 1 2 ) n ⁒ F 1 2 ⁑ ( - n , - n - Ξ² Ξ± + 1 ; x - 1 x + 1 ) superscript 2 𝑛 superscript subscript β„“ 0 𝑛 binomial 𝑛 𝛼 β„“ binomial 𝑛 𝛽 𝑛 β„“ superscript π‘₯ 1 𝑛 β„“ superscript π‘₯ 1 β„“ Pochhammer 𝛼 1 𝑛 𝑛 superscript π‘₯ 1 2 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛽 𝛼 1 π‘₯ 1 π‘₯ 1 {\displaystyle{\displaystyle 2^{-n}\sum_{\ell=0}^{n}\genfrac{(}{)}{0.0pt}{}{n+% \alpha}{\ell}\genfrac{(}{)}{0.0pt}{}{n+\beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell% }=\frac{{\left(\alpha+1\right)_{n}}}{n!}\left(\frac{x+1}{2}\right)^{n}{{}_{2}F% _{1}}\left({-n,-n-\beta\atop\alpha+1};\frac{x-1}{x+1}\right)}}
2^{-n}\sum_{\ell=0}^{n}\binom{n+\alpha}{\ell}\binom{n+\beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}\left(\frac{x+1}{2}\right)^{n}\genhyperF{2}{1}@@{-n,-n-\beta}{\alpha+1}{\frac{x-1}{x+1}}

(2)^(- n)* sum(binomial(n + alpha,ell)*binomial(n + beta,n - ell)*(x - 1)^(n - ell)*(x + 1)^(ell), ell = 0..n) = (pochhammer(alpha + 1, n))/(factorial(n))*((x + 1)/(2))^(n)* hypergeom([- n , - n - beta], [alpha + 1], (x - 1)/(x + 1))
(2)^(- n)* Sum[Binomial[n + \[Alpha],\[ScriptL]]*Binomial[n + \[Beta],n - \[ScriptL]]*(x - 1)^(n - \[ScriptL])*(x + 1)^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*(Divide[x + 1,2])^(n)* HypergeometricPFQ[{- n , - n - \[Beta]}, {\[Alpha]+ 1}, Divide[x - 1,x + 1]]
Failure Failure Successful [Tested: 81] Successful [Tested: 81]
18.5.E9 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - n , n + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ Pochhammer 2 πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 2 πœ† πœ† 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-n,n+2\lambda\atop\lambda+\tfrac{1% }{2}};\frac{1-x}{2}\right)}}
\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{n!}\genhyperF{2}{1}@@{-n,n+2\lambda}{\lambda+\tfrac{1}{2}}{\frac{1-x}{2}}

GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(factorial(n))*hypergeom([- n , n + 2*lambda], [lambda +(1)/(2)], (1 - x)/(2))
GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],(n)!]*HypergeometricPFQ[{- n , n + 2*\[Lambda]}, {\[Lambda]+Divide[1,2]}, Divide[1 - x,2]]
Successful Successful -
Failed [15 / 90]
Result: 0.375
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Ξ», -1.5]}

Result: 0.4375
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Ξ», -1.5]}

... skip entries to safe data
18.5.E10 C n ( Ξ» ) ⁑ ( x ) = βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 2 β„“ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\sum_{\ell=0}^{% \left\lfloor n/2\right\rfloor}\frac{(-1)^{\ell}{\left(\lambda\right)_{n-\ell}}% }{\ell!\;(n-2\ell)!}(2x)^{n-2\ell}}}
\ultrasphpoly{\lambda}{n}@{x} = \sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}\Pochhammersym{\lambda}{n-\ell}}{\ell!\;(n-2\ell)!}(2x)^{n-2\ell}

GegenbauerC(n, lambda, x) = sum(((- 1)^(ell)* pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - 2*ell))*(2*x)^(n - 2*ell), ell = 0..floor(n/2))
GegenbauerC[n, \[Lambda], x] == Sum[Divide[(- 1)^\[ScriptL]* Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - 2*\[ScriptL])!]*(2*x)^(n - 2*\[ScriptL]), {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None]
Failure Successful Manual Skip! Successful [Tested: 90]
18.5.E10 βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ = ( 2 ⁒ x ) n ⁒ ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - 1 2 ⁒ n , - 1 2 ⁒ n + 1 2 1 - Ξ» - n ; 1 x 2 ) superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 1 2 𝑛 1 2 𝑛 1 2 1 πœ† 𝑛 1 superscript π‘₯ 2 {\displaystyle{\displaystyle\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}\frac% {(-1)^{\ell}{\left(\lambda\right)_{n-\ell}}}{\ell!\;(n-2\ell)!}(2x)^{n-2\ell}=% (2x)^{n}\frac{{\left(\lambda\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-\tfrac{1}{2}% n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop 1-\lambda-n};\frac{1}{x^{2}}\right)}}
\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}\Pochhammersym{\lambda}{n-\ell}}{\ell!\;(n-2\ell)!}(2x)^{n-2\ell} = (2x)^{n}\frac{\Pochhammersym{\lambda}{n}}{n!}\genhyperF{2}{1}@@{-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}}{1-\lambda-n}{\frac{1}{x^{2}}}

sum(((- 1)^(ell)* pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - 2*ell))*(2*x)^(n - 2*ell), ell = 0..floor(n/2)) = (2*x)^(n)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([-(1)/(2)*n , -(1)/(2)*n +(1)/(2)], [1 - lambda - n], (1)/((x)^(2)))
Sum[Divide[(- 1)^\[ScriptL]* Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - 2*\[ScriptL])!]*(2*x)^(n - 2*\[ScriptL]), {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None] == (2*x)^(n)*Divide[Pochhammer[\[Lambda], n],(n)!]*HypergeometricPFQ[{-Divide[1,2]*n , -Divide[1,2]*n +Divide[1,2]}, {1 - \[Lambda]- n}, Divide[1,(x)^(2)]]
Failure Failure Manual Skip!
Failed [3 / 90]
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Ξ», -2]}

Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 0.5], Rule[Ξ», -2]}

... skip entries to safe data
18.5.E11 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) = βˆ‘ β„“ = 0 n ( Ξ» ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ cos ⁑ ( ( n - 2 ⁒ β„“ ) ⁒ ΞΈ ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 πœƒ superscript subscript β„“ 0 𝑛 Pochhammer πœ† β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ 𝑛 2 β„“ πœƒ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(\cos\theta\right)=\sum_{% \ell=0}^{n}\frac{{\left(\lambda\right)_{\ell}}{\left(\lambda\right)_{n-\ell}}}% {\ell!\;(n-\ell)!}\cos\left((n-2\ell)\theta\right)}}
\ultrasphpoly{\lambda}{n}@{\cos@@{\theta}} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda}{\ell}\Pochhammersym{\lambda}{n-\ell}}{\ell!\;(n-\ell)!}\cos@{(n-2\ell)\theta}

GegenbauerC(n, lambda, cos(theta)) = sum((pochhammer(lambda, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*cos((n - 2*ell)*theta), ell = 0..n)
GegenbauerC[n, \[Lambda], Cos[\[Theta]]] == Sum[Divide[Pochhammer[\[Lambda], \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*Cos[(n - 2*\[ScriptL])*\[Theta]], {\[ScriptL], 0, n}, GenerateConditions->None]
Failure Failure Error
Failed [30 / 300]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», -2]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», -2]}

... skip entries to safe data
18.5.E11 βˆ‘ β„“ = 0 n ( Ξ» ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ cos ⁑ ( ( n - 2 ⁒ β„“ ) ⁒ ΞΈ ) = e i ⁒ n ⁒ ΞΈ ⁒ ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - n , Ξ» 1 - Ξ» - n ; e - 2 ⁒ i ⁒ ΞΈ ) superscript subscript β„“ 0 𝑛 Pochhammer πœ† β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ 𝑛 2 β„“ πœƒ superscript 𝑒 imaginary-unit 𝑛 πœƒ Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 πœ† 1 πœ† 𝑛 superscript 𝑒 2 imaginary-unit πœƒ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(\lambda\right)_{\ell% }}{\left(\lambda\right)_{n-\ell}}}{\ell!\;(n-\ell)!}\cos\left((n-2\ell)\theta% \right)=e^{\mathrm{i}n\theta}\frac{{\left(\lambda\right)_{n}}}{n!}{{}_{2}F_{1}% }\left({-n,\lambda\atop 1-\lambda-n};e^{-2\mathrm{i}\theta}\right)}}
\sum_{\ell=0}^{n}\frac{\Pochhammersym{\lambda}{\ell}\Pochhammersym{\lambda}{n-\ell}}{\ell!\;(n-\ell)!}\cos@{(n-2\ell)\theta} = e^{\iunit n\theta}\frac{\Pochhammersym{\lambda}{n}}{n!}\genhyperF{2}{1}@@{-n,\lambda}{1-\lambda-n}{e^{-2\iunit\theta}}

sum((pochhammer(lambda, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*cos((n - 2*ell)*theta), ell = 0..n) = exp(I*n*theta)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n , lambda], [1 - lambda - n], exp(- 2*I*theta))
Sum[Divide[Pochhammer[\[Lambda], \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*Cos[(n - 2*\[ScriptL])*\[Theta]], {\[ScriptL], 0, n}, GenerateConditions->None] == Exp[I*n*\[Theta]]*Divide[Pochhammer[\[Lambda], n],(n)!]*HypergeometricPFQ[{- n , \[Lambda]}, {1 - \[Lambda]- n}, Exp[- 2*I*\[Theta]]]
Failure Failure Error
Failed [30 / 300]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», -2]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ», -2]}

... skip entries to safe data
18.5.E12 L n ( Ξ± ) ⁑ ( x ) = βˆ‘ β„“ = 0 n ( Ξ± + β„“ + 1 ) n - β„“ ( n - β„“ ) ! ⁒ β„“ ! ⁒ ( - x ) β„“ Laguerre-polynomial-L 𝛼 𝑛 π‘₯ superscript subscript β„“ 0 𝑛 Pochhammer 𝛼 β„“ 1 𝑛 β„“ 𝑛 β„“ β„“ superscript π‘₯ β„“ {\displaystyle{\displaystyle L^{(\alpha)}_{n}\left(x\right)=\sum_{\ell=0}^{n}% \frac{{\left(\alpha+\ell+1\right)_{n-\ell}}}{(n-\ell)!\;\ell!}(-x)^{\ell}}}
\LaguerrepolyL[\alpha]{n}@{x} = \sum_{\ell=0}^{n}\frac{\Pochhammersym{\alpha+\ell+1}{n-\ell}}{(n-\ell)!\;\ell!}(-x)^{\ell}

LaguerreL(n, alpha, x) = sum((pochhammer(alpha + ell + 1, n - ell))/(factorial(n - ell)*factorial(ell))*(- x)^(ell), ell = 0..n)
LaguerreL[n, \[Alpha], x] == Sum[Divide[Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(n - \[ScriptL])!*(\[ScriptL])!]*(- x)^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 27]
18.5.E12 βˆ‘ β„“ = 0 n ( Ξ± + β„“ + 1 ) n - β„“ ( n - β„“ ) ! ⁒ β„“ ! ⁒ ( - x ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 1 ⁑ ( - n Ξ± + 1 ; x ) superscript subscript β„“ 0 𝑛 Pochhammer 𝛼 β„“ 1 𝑛 β„“ 𝑛 β„“ β„“ superscript π‘₯ β„“ Pochhammer 𝛼 1 𝑛 𝑛 Kummer-confluent-hypergeometric-M-as-1F1 𝑛 𝛼 1 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(\alpha+\ell+1\right)% _{n-\ell}}}{(n-\ell)!\;\ell!}(-x)^{\ell}=\frac{{\left(\alpha+1\right)_{n}}}{n!% }{{}_{1}F_{1}}\left({-n\atop\alpha+1};x\right)}}
\sum_{\ell=0}^{n}\frac{\Pochhammersym{\alpha+\ell+1}{n-\ell}}{(n-\ell)!\;\ell!}(-x)^{\ell} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}\genhyperF{1}{1}@@{-n}{\alpha+1}{x}

sum((pochhammer(alpha + ell + 1, n - ell))/(factorial(n - ell)*factorial(ell))*(- x)^(ell), ell = 0..n) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n], [alpha + 1], x)
Sum[Divide[Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(n - \[ScriptL])!*(\[ScriptL])!]*(- x)^\[ScriptL], {\[ScriptL], 0, n}, GenerateConditions->None] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n}, {\[Alpha]+ 1}, x]
Successful Successful - Successful [Tested: 27]
18.5.E13 H n ⁑ ( x ) = n ! ⁒ βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! Hermite-polynomial-H 𝑛 π‘₯ 𝑛 superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ superscript 2 π‘₯ 𝑛 2 β„“ β„“ 𝑛 2 β„“ {\displaystyle{\displaystyle H_{n}\left(x\right)=n!\sum_{\ell=0}^{\left\lfloor n% /2\right\rfloor}\frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!}}}
\HermitepolyH{n}@{x} = n!\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!}

HermiteH(n, x) = factorial(n)*sum(((- 1)^(ell)*(2*x)^(n - 2*ell))/(factorial(ell)*factorial(n - 2*ell)), ell = 0..floor(n/2))
HermiteH[n, x] == (n)!*Sum[Divide[(- 1)^\[ScriptL]*(2*x)^(n - 2*\[ScriptL]),(\[ScriptL])!*(n - 2*\[ScriptL])!], {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
18.5.E13 n ! ⁒ βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! = ( 2 ⁒ x ) n ⁒ F 0 2 ⁑ ( - 1 2 ⁒ n , - 1 2 ⁒ n + 1 2 - ; - 1 x 2 ) 𝑛 superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ superscript 2 π‘₯ 𝑛 2 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 Gauss-hypergeometric-pFq 2 0 1 2 𝑛 1 2 𝑛 1 2 1 superscript π‘₯ 2 {\displaystyle{\displaystyle n!\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}% \frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!}=(2x)^{n}{{}_{2}F_{0}}\left% ({-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop-};-\frac{1}{x^{2}}\right)}}
n!\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!} = (2x)^{n}\genhyperF{2}{0}@@{-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}}{-}{-\frac{1}{x^{2}}}

factorial(n)*sum(((- 1)^(ell)*(2*x)^(n - 2*ell))/(factorial(ell)*factorial(n - 2*ell)), ell = 0..floor(n/2)) = (2*x)^(n)* hypergeom([-(1)/(2)*n , -(1)/(2)*n +(1)/(2)], [-], -(1)/((x)^(2)))
(n)!*Sum[Divide[(- 1)^\[ScriptL]*(2*x)^(n - 2*\[ScriptL]),(\[ScriptL])!*(n - 2*\[ScriptL])!], {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None] == (2*x)^(n)* HypergeometricPFQ[{-Divide[1,2]*n , -Divide[1,2]*n +Divide[1,2]}, {-}, -Divide[1,(x)^(2)]]
Error Failure Skip - symbolical successful subtest Error
18.5#Ex1 T 0 ⁑ ( x ) = 1 Chebyshev-polynomial-first-kind-T 0 π‘₯ 1 {\displaystyle{\displaystyle T_{0}\left(x\right)=1}}
\ChebyshevpolyT{0}@{x} = 1

ChebyshevT(0, x) = 1
ChebyshevT[0, x] == 1
Successful Successful - Successful [Tested: 3]
18.5#Ex2 T 1 ⁑ ( x ) = x Chebyshev-polynomial-first-kind-T 1 π‘₯ π‘₯ {\displaystyle{\displaystyle T_{1}\left(x\right)=x}}
\ChebyshevpolyT{1}@{x} = x

ChebyshevT(1, x) = x
ChebyshevT[1, x] == x
Successful Successful - Successful [Tested: 3]
18.5#Ex3 T 2 ⁑ ( x ) = 2 ⁒ x 2 - 1 Chebyshev-polynomial-first-kind-T 2 π‘₯ 2 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{2}\left(x\right)=2x^{2}-1}}
\ChebyshevpolyT{2}@{x} = 2x^{2}-1

ChebyshevT(2, x) = 2*(x)^(2)- 1
ChebyshevT[2, x] == 2*(x)^(2)- 1
Successful Successful - Successful [Tested: 3]
18.5#Ex4 T 3 ⁑ ( x ) = 4 ⁒ x 3 - 3 ⁒ x Chebyshev-polynomial-first-kind-T 3 π‘₯ 4 superscript π‘₯ 3 3 π‘₯ {\displaystyle{\displaystyle T_{3}\left(x\right)=4x^{3}-3x}}
\ChebyshevpolyT{3}@{x} = 4x^{3}-3x

ChebyshevT(3, x) = 4*(x)^(3)- 3*x
ChebyshevT[3, x] == 4*(x)^(3)- 3*x
Successful Successful - Successful [Tested: 3]
18.5#Ex5 T 4 ⁑ ( x ) = 8 ⁒ x 4 - 8 ⁒ x 2 + 1 Chebyshev-polynomial-first-kind-T 4 π‘₯ 8 superscript π‘₯ 4 8 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{4}\left(x\right)=8x^{4}-8x^{2}+1}}
\ChebyshevpolyT{4}@{x} = 8x^{4}-8x^{2}+1

ChebyshevT(4, x) = 8*(x)^(4)- 8*(x)^(2)+ 1
ChebyshevT[4, x] == 8*(x)^(4)- 8*(x)^(2)+ 1
Successful Successful - Successful [Tested: 3]
18.5#Ex6 T 5 ⁑ ( x ) = 16 ⁒ x 5 - 20 ⁒ x 3 + 5 ⁒ x Chebyshev-polynomial-first-kind-T 5 π‘₯ 16 superscript π‘₯ 5 20 superscript π‘₯ 3 5 π‘₯ {\displaystyle{\displaystyle T_{5}\left(x\right)=16x^{5}-20x^{3}+5x}}
\ChebyshevpolyT{5}@{x} = 16x^{5}-20x^{3}+5x

ChebyshevT(5, x) = 16*(x)^(5)- 20*(x)^(3)+ 5*x
ChebyshevT[5, x] == 16*(x)^(5)- 20*(x)^(3)+ 5*x
Successful Successful - Successful [Tested: 3]
18.5#Ex7 T 6 ⁑ ( x ) = 32 ⁒ x 6 - 48 ⁒ x 4 + 18 ⁒ x 2 - 1 Chebyshev-polynomial-first-kind-T 6 π‘₯ 32 superscript π‘₯ 6 48 superscript π‘₯ 4 18 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{6}\left(x\right)=32x^{6}-48x^{4}+18x^{2}-1}}
\ChebyshevpolyT{6}@{x} = 32x^{6}-48x^{4}+18x^{2}-1

ChebyshevT(6, x) = 32*(x)^(6)- 48*(x)^(4)+ 18*(x)^(2)- 1
ChebyshevT[6, x] == 32*(x)^(6)- 48*(x)^(4)+ 18*(x)^(2)- 1
Successful Successful - Successful [Tested: 3]
18.5#Ex8 U 0 ⁑ ( x ) = 1 Chebyshev-polynomial-second-kind-U 0 π‘₯ 1 {\displaystyle{\displaystyle U_{0}\left(x\right)=1}}
\ChebyshevpolyU{0}@{x} = 1

ChebyshevU(0, x) = 1
ChebyshevU[0, x] == 1
Successful Successful - Successful [Tested: 3]
18.5#Ex9 U 1 ⁑ ( x ) = 2 ⁒ x Chebyshev-polynomial-second-kind-U 1 π‘₯ 2 π‘₯ {\displaystyle{\displaystyle U_{1}\left(x\right)=2x}}
\ChebyshevpolyU{1}@{x} = 2x

ChebyshevU(1, x) = 2*x
ChebyshevU[1, x] == 2*x
Successful Successful - Successful [Tested: 3]
18.5#Ex10 U 2 ⁑ ( x ) = 4 ⁒ x 2 - 1 Chebyshev-polynomial-second-kind-U 2 π‘₯ 4 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{2}\left(x\right)=4x^{2}-1}}
\ChebyshevpolyU{2}@{x} = 4x^{2}-1

ChebyshevU(2, x) = 4*(x)^(2)- 1
ChebyshevU[2, x] == 4*(x)^(2)- 1
Successful Successful - Successful [Tested: 3]
18.5#Ex11 U 3 ⁑ ( x ) = 8 ⁒ x 3 - 4 ⁒ x Chebyshev-polynomial-second-kind-U 3 π‘₯ 8 superscript π‘₯ 3 4 π‘₯ {\displaystyle{\displaystyle U_{3}\left(x\right)=8x^{3}-4x}}
\ChebyshevpolyU{3}@{x} = 8x^{3}-4x

ChebyshevU(3, x) = 8*(x)^(3)- 4*x
ChebyshevU[3, x] == 8*(x)^(3)- 4*x
Successful Successful - Successful [Tested: 3]
18.5#Ex12 U 4 ⁑ ( x ) = 16 ⁒ x 4 - 12 ⁒ x 2 + 1 Chebyshev-polynomial-second-kind-U 4 π‘₯ 16 superscript π‘₯ 4 12 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{4}\left(x\right)=16x^{4}-12x^{2}+1}}
\ChebyshevpolyU{4}@{x} = 16x^{4}-12x^{2}+1

ChebyshevU(4, x) = 16*(x)^(4)- 12*(x)^(2)+ 1
ChebyshevU[4, x] == 16*(x)^(4)- 12*(x)^(2)+ 1
Successful Successful - Successful [Tested: 3]
18.5#Ex13 U 5 ⁑ ( x ) = 32 ⁒ x 5 - 32 ⁒ x 3 + 6 ⁒ x Chebyshev-polynomial-second-kind-U 5 π‘₯ 32 superscript π‘₯ 5 32 superscript π‘₯ 3 6 π‘₯ {\displaystyle{\displaystyle U_{5}\left(x\right)=32x^{5}-32x^{3}+6x}}
\ChebyshevpolyU{5}@{x} = 32x^{5}-32x^{3}+6x

ChebyshevU(5, x) = 32*(x)^(5)- 32*(x)^(3)+ 6*x
ChebyshevU[5, x] == 32*(x)^(5)- 32*(x)^(3)+ 6*x
Successful Successful - Successful [Tested: 3]
18.5#Ex14 U 6 ⁑ ( x ) = 64 ⁒ x 6 - 80 ⁒ x 4 + 24 ⁒ x 2 - 1 Chebyshev-polynomial-second-kind-U 6 π‘₯ 64 superscript π‘₯ 6 80 superscript π‘₯ 4 24 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{6}\left(x\right)=64x^{6}-80x^{4}+24x^{2}-1}}
\ChebyshevpolyU{6}@{x} = 64x^{6}-80x^{4}+24x^{2}-1

ChebyshevU(6, x) = 64*(x)^(6)- 80*(x)^(4)+ 24*(x)^(2)- 1
ChebyshevU[6, x] == 64*(x)^(6)- 80*(x)^(4)+ 24*(x)^(2)- 1
Successful Successful - Successful [Tested: 3]
18.5#Ex15 P 0 ⁑ ( x ) = 1 Legendre-spherical-polynomial 0 π‘₯ 1 {\displaystyle{\displaystyle P_{0}\left(x\right)=1}}
\LegendrepolyP{0}@{x} = 1

LegendreP(0, x) = 1
LegendreP[0, x] == 1
Successful Successful - Successful [Tested: 3]
18.5#Ex16 P 1 ⁑ ( x ) = x Legendre-spherical-polynomial 1 π‘₯ π‘₯ {\displaystyle{\displaystyle P_{1}\left(x\right)=x}}
\LegendrepolyP{1}@{x} = x

LegendreP(1, x) = x
LegendreP[1, x] == x
Successful Successful - Successful [Tested: 3]
18.5#Ex17 P 2 ⁑ ( x ) = 3 2 ⁒ x 2 - 1 2 Legendre-spherical-polynomial 2 π‘₯ 3 2 superscript π‘₯ 2 1 2 {\displaystyle{\displaystyle P_{2}\left(x\right)=\tfrac{3}{2}x^{2}-\tfrac{1}{2% }}}
\LegendrepolyP{2}@{x} = \tfrac{3}{2}x^{2}-\tfrac{1}{2}

LegendreP(2, x) = (3)/(2)*(x)^(2)-(1)/(2)
LegendreP[2, x] == Divide[3,2]*(x)^(2)-Divide[1,2]
Successful Successful - Successful [Tested: 3]
18.5#Ex18 P 3 ⁑ ( x ) = 5 2 ⁒ x 3 - 3 2 ⁒ x Legendre-spherical-polynomial 3 π‘₯ 5 2 superscript π‘₯ 3 3 2 π‘₯ {\displaystyle{\displaystyle P_{3}\left(x\right)=\tfrac{5}{2}x^{3}-\tfrac{3}{2% }x}}
\LegendrepolyP{3}@{x} = \tfrac{5}{2}x^{3}-\tfrac{3}{2}x

LegendreP(3, x) = (5)/(2)*(x)^(3)-(3)/(2)*x
LegendreP[3, x] == Divide[5,2]*(x)^(3)-Divide[3,2]*x
Successful Successful - Successful [Tested: 3]
18.5#Ex19 P 4 ⁑ ( x ) = 35 8 ⁒ x 4 - 15 4 ⁒ x 2 + 3 8 Legendre-spherical-polynomial 4 π‘₯ 35 8 superscript π‘₯ 4 15 4 superscript π‘₯ 2 3 8 {\displaystyle{\displaystyle P_{4}\left(x\right)=\tfrac{35}{8}x^{4}-\tfrac{15}% {4}x^{2}+\tfrac{3}{8}}}
\LegendrepolyP{4}@{x} = \tfrac{35}{8}x^{4}-\tfrac{15}{4}x^{2}+\tfrac{3}{8}

LegendreP(4, x) = (35)/(8)*(x)^(4)-(15)/(4)*(x)^(2)+(3)/(8)
LegendreP[4, x] == Divide[35,8]*(x)^(4)-Divide[15,4]*(x)^(2)+Divide[3,8]
Successful Successful - Successful [Tested: 3]
18.5#Ex20 P 5 ⁑ ( x ) = 63 8 ⁒ x 5 - 35 4 ⁒ x 3 + 15 8 ⁒ x Legendre-spherical-polynomial 5 π‘₯ 63 8 superscript π‘₯ 5 35 4 superscript π‘₯ 3 15 8 π‘₯ {\displaystyle{\displaystyle P_{5}\left(x\right)=\tfrac{63}{8}x^{5}-\tfrac{35}% {4}x^{3}+\tfrac{15}{8}x}}
\LegendrepolyP{5}@{x} = \tfrac{63}{8}x^{5}-\tfrac{35}{4}x^{3}+\tfrac{15}{8}x

LegendreP(5, x) = (63)/(8)*(x)^(5)-(35)/(4)*(x)^(3)+(15)/(8)*x
LegendreP[5, x] == Divide[63,8]*(x)^(5)-Divide[35,4]*(x)^(3)+Divide[15,8]*x
Successful Successful - Successful [Tested: 3]
18.5#Ex21 P 6 ⁑ ( x ) = 231 16 ⁒ x 6 - 315 16 ⁒ x 4 + 105 16 ⁒ x 2 - 5 16 Legendre-spherical-polynomial 6 π‘₯ 231 16 superscript π‘₯ 6 315 16 superscript π‘₯ 4 105 16 superscript π‘₯ 2 5 16 {\displaystyle{\displaystyle P_{6}\left(x\right)=\tfrac{231}{16}x^{6}-\tfrac{3% 15}{16}x^{4}+\tfrac{105}{16}x^{2}-\tfrac{5}{16}}}
\LegendrepolyP{6}@{x} = \tfrac{231}{16}x^{6}-\tfrac{315}{16}x^{4}+\tfrac{105}{16}x^{2}-\tfrac{5}{16}

LegendreP(6, x) = (231)/(16)*(x)^(6)-(315)/(16)*(x)^(4)+(105)/(16)*(x)^(2)-(5)/(16)
LegendreP[6, x] == Divide[231,16]*(x)^(6)-Divide[315,16]*(x)^(4)+Divide[105,16]*(x)^(2)-Divide[5,16]
Successful Successful - Successful [Tested: 3]
18.5#Ex22 L 0 ⁑ ( x ) = 1 shorthand-Laguerre-polynomial-L 0 π‘₯ 1 {\displaystyle{\displaystyle L_{0}\left(x\right)=1}}
\LaguerrepolyL[]{0}@{x} = 1

LaguerreL(0, x) = 1
LaguerreL[0, x] == 1
Successful Successful - Successful [Tested: 3]
18.5#Ex23 L 1 ⁑ ( x ) = - x + 1 shorthand-Laguerre-polynomial-L 1 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle L_{1}\left(x\right)=-x+1}}
\LaguerrepolyL[]{1}@{x} = -x+1

LaguerreL(1, x) = - x + 1
LaguerreL[1, x] == - x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex24 L 2 ⁑ ( x ) = 1 2 ⁒ x 2 - 2 ⁒ x + 1 shorthand-Laguerre-polynomial-L 2 π‘₯ 1 2 superscript π‘₯ 2 2 π‘₯ 1 {\displaystyle{\displaystyle L_{2}\left(x\right)=\tfrac{1}{2}x^{2}-2x+1}}
\LaguerrepolyL[]{2}@{x} = \tfrac{1}{2}x^{2}-2x+1

LaguerreL(2, x) = (1)/(2)*(x)^(2)- 2*x + 1
LaguerreL[2, x] == Divide[1,2]*(x)^(2)- 2*x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex25 L 3 ⁑ ( x ) = - 1 6 ⁒ x 3 + 3 2 ⁒ x 2 - 3 ⁒ x + 1 shorthand-Laguerre-polynomial-L 3 π‘₯ 1 6 superscript π‘₯ 3 3 2 superscript π‘₯ 2 3 π‘₯ 1 {\displaystyle{\displaystyle L_{3}\left(x\right)=-\tfrac{1}{6}x^{3}+\tfrac{3}{% 2}x^{2}-3x+1}}
\LaguerrepolyL[]{3}@{x} = -\tfrac{1}{6}x^{3}+\tfrac{3}{2}x^{2}-3x+1

LaguerreL(3, x) = -(1)/(6)*(x)^(3)+(3)/(2)*(x)^(2)- 3*x + 1
LaguerreL[3, x] == -Divide[1,6]*(x)^(3)+Divide[3,2]*(x)^(2)- 3*x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex26 L 4 ⁑ ( x ) = 1 24 ⁒ x 4 - 2 3 ⁒ x 3 + 3 ⁒ x 2 - 4 ⁒ x + 1 shorthand-Laguerre-polynomial-L 4 π‘₯ 1 24 superscript π‘₯ 4 2 3 superscript π‘₯ 3 3 superscript π‘₯ 2 4 π‘₯ 1 {\displaystyle{\displaystyle L_{4}\left(x\right)=\tfrac{1}{24}x^{4}-\tfrac{2}{% 3}x^{3}+3x^{2}-4x+1}}
\LaguerrepolyL[]{4}@{x} = \tfrac{1}{24}x^{4}-\tfrac{2}{3}x^{3}+3x^{2}-4x+1

LaguerreL(4, x) = (1)/(24)*(x)^(4)-(2)/(3)*(x)^(3)+ 3*(x)^(2)- 4*x + 1
LaguerreL[4, x] == Divide[1,24]*(x)^(4)-Divide[2,3]*(x)^(3)+ 3*(x)^(2)- 4*x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex27 L 5 ⁑ ( x ) = - 1 120 ⁒ x 5 + 5 24 ⁒ x 4 - 5 3 ⁒ x 3 + 5 ⁒ x 2 - 5 ⁒ x + 1 shorthand-Laguerre-polynomial-L 5 π‘₯ 1 120 superscript π‘₯ 5 5 24 superscript π‘₯ 4 5 3 superscript π‘₯ 3 5 superscript π‘₯ 2 5 π‘₯ 1 {\displaystyle{\displaystyle L_{5}\left(x\right)=-\tfrac{1}{120}x^{5}+\tfrac{5% }{24}x^{4}-\tfrac{5}{3}x^{3}+5x^{2}-5x+1}}
\LaguerrepolyL[]{5}@{x} = -\tfrac{1}{120}x^{5}+\tfrac{5}{24}x^{4}-\tfrac{5}{3}x^{3}+5x^{2}-5x+1

LaguerreL(5, x) = -(1)/(120)*(x)^(5)+(5)/(24)*(x)^(4)-(5)/(3)*(x)^(3)+ 5*(x)^(2)- 5*x + 1
LaguerreL[5, x] == -Divide[1,120]*(x)^(5)+Divide[5,24]*(x)^(4)-Divide[5,3]*(x)^(3)+ 5*(x)^(2)- 5*x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex28 L 6 ⁑ ( x ) = 1 720 ⁒ x 6 - 1 20 ⁒ x 5 + 5 8 ⁒ x 4 - 10 3 ⁒ x 3 + 15 2 ⁒ x 2 - 6 ⁒ x + 1 shorthand-Laguerre-polynomial-L 6 π‘₯ 1 720 superscript π‘₯ 6 1 20 superscript π‘₯ 5 5 8 superscript π‘₯ 4 10 3 superscript π‘₯ 3 15 2 superscript π‘₯ 2 6 π‘₯ 1 {\displaystyle{\displaystyle L_{6}\left(x\right)=\tfrac{1}{720}x^{6}-\tfrac{1}% {20}x^{5}+\tfrac{5}{8}x^{4}-\tfrac{10}{3}x^{3}+\tfrac{15}{2}x^{2}-6x+1}}
\LaguerrepolyL[]{6}@{x} = \tfrac{1}{720}x^{6}-\tfrac{1}{20}x^{5}+\tfrac{5}{8}x^{4}-\tfrac{10}{3}x^{3}+\tfrac{15}{2}x^{2}-6x+1

LaguerreL(6, x) = (1)/(720)*(x)^(6)-(1)/(20)*(x)^(5)+(5)/(8)*(x)^(4)-(10)/(3)*(x)^(3)+(15)/(2)*(x)^(2)- 6*x + 1
LaguerreL[6, x] == Divide[1,720]*(x)^(6)-Divide[1,20]*(x)^(5)+Divide[5,8]*(x)^(4)-Divide[10,3]*(x)^(3)+Divide[15,2]*(x)^(2)- 6*x + 1
Successful Successful - Successful [Tested: 3]
18.5#Ex29 H 0 ⁑ ( x ) = 1 Hermite-polynomial-H 0 π‘₯ 1 {\displaystyle{\displaystyle H_{0}\left(x\right)=1}}
\HermitepolyH{0}@{x} = 1

HermiteH(0, x) = 1
HermiteH[0, x] == 1
Successful Successful - Successful [Tested: 3]
18.5#Ex30 H 1 ⁑ ( x ) = 2 ⁒ x Hermite-polynomial-H 1 π‘₯ 2 π‘₯ {\displaystyle{\displaystyle H_{1}\left(x\right)=2x}}
\HermitepolyH{1}@{x} = 2x

HermiteH(1, x) = 2*x
HermiteH[1, x] == 2*x
Successful Successful - Successful [Tested: 3]
18.5#Ex31 H 2 ⁑ ( x ) = 4 ⁒ x 2 - 2 Hermite-polynomial-H 2 π‘₯ 4 superscript π‘₯ 2 2 {\displaystyle{\displaystyle H_{2}\left(x\right)=4x^{2}-2}}
\HermitepolyH{2}@{x} = 4x^{2}-2

HermiteH(2, x) = 4*(x)^(2)- 2
HermiteH[2, x] == 4*(x)^(2)- 2
Successful Successful - Successful [Tested: 3]
18.5#Ex32 H 3 ⁑ ( x ) = 8 ⁒ x 3 - 12 ⁒ x Hermite-polynomial-H 3 π‘₯ 8 superscript π‘₯ 3 12 π‘₯ {\displaystyle{\displaystyle H_{3}\left(x\right)=8x^{3}-12x}}
\HermitepolyH{3}@{x} = 8x^{3}-12x

HermiteH(3, x) = 8*(x)^(3)- 12*x
HermiteH[3, x] == 8*(x)^(3)- 12*x
Successful Successful - Successful [Tested: 3]
18.5#Ex33 H 4 ⁑ ( x ) = 16 ⁒ x 4 - 48 ⁒ x 2 + 12 Hermite-polynomial-H 4 π‘₯ 16 superscript π‘₯ 4 48 superscript π‘₯ 2 12 {\displaystyle{\displaystyle H_{4}\left(x\right)=16x^{4}-48x^{2}+12}}
\HermitepolyH{4}@{x} = 16x^{4}-48x^{2}+12

HermiteH(4, x) = 16*(x)^(4)- 48*(x)^(2)+ 12
HermiteH[4, x] == 16*(x)^(4)- 48*(x)^(2)+ 12
Successful Successful - Successful [Tested: 3]
18.5#Ex34 H 5 ⁑ ( x ) = 32 ⁒ x 5 - 160 ⁒ x 3 + 120 ⁒ x Hermite-polynomial-H 5 π‘₯ 32 superscript π‘₯ 5 160 superscript π‘₯ 3 120 π‘₯ {\displaystyle{\displaystyle H_{5}\left(x\right)=32x^{5}-160x^{3}+120x}}
\HermitepolyH{5}@{x} = 32x^{5}-160x^{3}+120x

HermiteH(5, x) = 32*(x)^(5)- 160*(x)^(3)+ 120*x
HermiteH[5, x] == 32*(x)^(5)- 160*(x)^(3)+ 120*x
Successful Successful - Successful [Tested: 3]
18.5#Ex35 H 6 ⁑ ( x ) = 64 ⁒ x 6 - 480 ⁒ x 4 + 720 ⁒ x 2 - 120 Hermite-polynomial-H 6 π‘₯ 64 superscript π‘₯ 6 480 superscript π‘₯ 4 720 superscript π‘₯ 2 120 {\displaystyle{\displaystyle H_{6}\left(x\right)=64x^{6}-480x^{4}+720x^{2}-120}}
\HermitepolyH{6}@{x} = 64x^{6}-480x^{4}+720x^{2}-120

HermiteH(6, x) = 64*(x)^(6)- 480*(x)^(4)+ 720*(x)^(2)- 120
HermiteH[6, x] == 64*(x)^(6)- 480*(x)^(4)+ 720*(x)^(2)- 120
Successful Successful - Successful [Tested: 3]