Orthogonal Polynomials - 18.39 Physical Applications

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.39.E3 V ( x ) = 1 2 m ω 2 x 2 𝑉 𝑥 1 2 𝑚 superscript 𝜔 2 superscript 𝑥 2 {\displaystyle{\displaystyle V(x)=\tfrac{1}{2}m\omega^{2}x^{2}}}
V(x) = \tfrac{1}{2}m\omega^{2}x^{2}

V(x) = (1)/(2)*m*(omega)^(2)* (x)^(2)
V[x] == Divide[1,2]*m*\[Omega]^(2)* (x)^(2)
Skipped - no semantic math Skipped - no semantic math - -
18.39.E5 η n ( x ) = π - 1 4 2 - 1 2 n ( n ! b ) - 1 2 H n ( x / b ) e - x 2 / 2 b 2 subscript 𝜂 𝑛 𝑥 superscript 𝜋 1 4 superscript 2 1 2 𝑛 superscript 𝑛 𝑏 1 2 Hermite-polynomial-H 𝑛 𝑥 𝑏 superscript 𝑒 superscript 𝑥 2 2 superscript 𝑏 2 {\displaystyle{\displaystyle\eta_{n}(x)=\pi^{-\frac{1}{4}}2^{-\frac{1}{2}n}(n!% \,b)^{-\frac{1}{2}}H_{n}\left(x/b\right)e^{-x^{2}/2b^{2}}}}
\eta_{n}(x) = \pi^{-\frac{1}{4}}2^{-\frac{1}{2}n}(n!\,b)^{-\frac{1}{2}}\HermitepolyH{n}@{x/b}e^{-x^{2}/2b^{2}}

eta[n](x) = (Pi)^(-(1)/(4))* (2)^(-(1)/(2)*n)*(factorial(n)*b)^(-(1)/(2))* HermiteH(n, x/b)*exp(- (x)^(2)/2*(b)^(2))
Subscript[\[Eta], n][x] == (Pi)^(-Divide[1,4])* (2)^(-Divide[1,2]*n)*((n)!*b)^(-Divide[1,2])* HermiteH[n, x/b]*Exp[- (x)^(2)/2*(b)^(2)]
Failure Failure
Failed [300 / 300]
Result: 1.299038106+.6809960435*I
Test Values: {b = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, eta[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 1.299038106+.7845019783*I
Test Values: {b = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, eta[n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.6809960434853285]
Test Values: {Rule[b, -1.5], Rule[n, 1], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.299038105676658, 0.7845019782573356]
Test Values: {Rule[b, -1.5], Rule[n, 2], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data