Orthogonal Polynomials - 18.30 Associated OP’s

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.30.E1 A n ⁒ A n + 1 ⁒ C n + 1 > 0 subscript 𝐴 𝑛 subscript 𝐴 𝑛 1 subscript 𝐢 𝑛 1 0 {\displaystyle{\displaystyle A_{n}A_{n+1}C_{n+1}>0}}
A_{n}A_{n+1}C_{n+1} > 0
n β‰₯ 0 𝑛 0 {\displaystyle{\displaystyle n\geq 0}}
A[n]*A[n + 1]*C[n + 1] > 0
Subscript[A, n]*Subscript[A, n + 1]*Subscript[C, n + 1] > 0
Skipped - no semantic math Skipped - no semantic math - -
18.30#Ex1 p - 1 ⁒ ( x ; c ) = 0 subscript 𝑝 1 π‘₯ 𝑐 0 {\displaystyle{\displaystyle p_{-1}(x;c)=0}}
p_{-1}(x;c) = 0

p[- 1](x ; c) = 0
Subscript[p, - 1][x ; c] == 0
Skipped - no semantic math Skipped - no semantic math - -
18.30#Ex2 p 0 ⁒ ( x ; c ) = 1 subscript 𝑝 0 π‘₯ 𝑐 1 {\displaystyle{\displaystyle p_{0}(x;c)=1}}
p_{0}(x;c) = 1

p[0](x ; c) = 1
Subscript[p, 0][x ; c] == 1
Skipped - no semantic math Skipped - no semantic math - -
18.30.E3 p n + 1 ⁒ ( x ; c ) = ( A n + c ⁒ x + B n + c ) ⁒ p n ⁒ ( x ; c ) - C n + c ⁒ p n - 1 ⁒ ( x ; c ) subscript 𝑝 𝑛 1 π‘₯ 𝑐 subscript 𝐴 𝑛 𝑐 π‘₯ subscript 𝐡 𝑛 𝑐 subscript 𝑝 𝑛 π‘₯ 𝑐 subscript 𝐢 𝑛 𝑐 subscript 𝑝 𝑛 1 π‘₯ 𝑐 {\displaystyle{\displaystyle p_{n+1}(x;c)=(A_{n+c}x+B_{n+c})p_{n}(x;c)-C_{n+c}% p_{n-1}(x;c)}}
p_{n+1}(x;c) = (A_{n+c}x+B_{n+c})p_{n}(x;c)-C_{n+c}p_{n-1}(x;c)

p[n + 1](x ; c) = (A[n + c]*x + B[n + c])*p[n](x ; c)- C[n + c]*p[n - 1](x ; c)
Subscript[p, n + 1][x ; c] == (Subscript[A, n + c]*x + Subscript[B, n + c])*Subscript[p, n][x ; c]- Subscript[C, n + c]*Subscript[p, n - 1][x ; c]
Skipped - no semantic math Skipped - no semantic math - -