Orthogonal Polynomials - 18.30 Associated OPβs
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
18.30.E1 | A_{n}A_{n+1}C_{n+1} > 0 |
A[n]*A[n + 1]*C[n + 1] > 0 |
Subscript[A, n]*Subscript[A, n + 1]*Subscript[C, n + 1] > 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.30#Ex1 | p_{-1}(x;c) = 0 |
|
p[- 1](x ; c) = 0 |
Subscript[p, - 1][x ; c] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.30#Ex2 | p_{0}(x;c) = 1 |
|
p[0](x ; c) = 1 |
Subscript[p, 0][x ; c] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.30.E3 | p_{n+1}(x;c) = (A_{n+c}x+B_{n+c})p_{n}(x;c)-C_{n+c}p_{n-1}(x;c) |
|
p[n + 1](x ; c) = (A[n + c]*x + B[n + c])*p[n](x ; c)- C[n + c]*p[n - 1](x ; c) |
Subscript[p, n + 1][x ; c] == (Subscript[A, n + c]*x + Subscript[B, n + c])*Subscript[p, n][x ; c]- Subscript[C, n + c]*Subscript[p, n - 1][x ; c] |
Skipped - no semantic math | Skipped - no semantic math | - | - |