Orthogonal Polynomials - 18.21 Hahn Class: Interrelations

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.21#Ex3 C n ⁑ ( x ; a ) = C x ⁑ ( n ; a ) Charlier-polynomial-C 𝑛 π‘₯ π‘Ž Charlier-polynomial-C π‘₯ 𝑛 π‘Ž {\displaystyle{\displaystyle C_{n}\left(x;a\right)=C_{x}\left(n;a\right)}}
\CharlierpolyC{n}@{x}{a} = \CharlierpolyC{x}@{n}{a}

Error
HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{-(x), -(n)}, {}, -Divide[1,a]]
Missing Macro Error Missing Macro Error - -
18.21.E9 lim a β†’ ∞ ⁑ ( 2 ⁒ a ) 1 2 ⁒ n ⁒ C n ⁑ ( ( 2 ⁒ a ) 1 2 ⁒ x + a ; a ) = ( - 1 ) n ⁒ H n ⁑ ( x ) subscript β†’ π‘Ž superscript 2 π‘Ž 1 2 𝑛 Charlier-polynomial-C 𝑛 superscript 2 π‘Ž 1 2 π‘₯ π‘Ž π‘Ž superscript 1 𝑛 Hermite-polynomial-H 𝑛 π‘₯ {\displaystyle{\displaystyle\lim_{a\to\infty}(2a)^{\frac{1}{2}n}C_{n}\left((2a% )^{\frac{1}{2}}x+a;a\right)=(-1)^{n}H_{n}\left(x\right)}}
\lim_{a\to\infty}(2a)^{\frac{1}{2}n}\CharlierpolyC{n}@{(2a)^{\frac{1}{2}}x+a}{a} = (-1)^{n}\HermitepolyH{n}@{x}

Error
Limit[(2*a)^(Divide[1,2]*n)* HypergeometricPFQ[{-(n), -((2*a)^(Divide[1,2])* x + a)}, {}, -Divide[1,a]], a -> Infinity, GenerateConditions->None] == (- 1)^(n)* HermiteH[n, x]
Missing Macro Error Missing Macro Error - -