Orthogonal Polynomials - 18.2 General Orthogonal Polynomials
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
18.2.E1 | \int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0 |
int(p[n](x)* p[m](x)* w(x), x = a..b) = 0
|
Integrate[Subscript[p, n][x]* Subscript[p, m][x]* w[x], {x, a, b}, GenerateConditions->None] == 0
|
Failure | Failure | Successful [Tested: 300] | Successful [Tested: 300] | |
18.2.E2 | \sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0 |
sum(p[n](x)* p[m](x)* w[x], x in X) = 0 |
Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.2.E3 | \sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0 |
|
sum(p[n](x)* p[m](x)* w[x], x in X) = 0 |
Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.2.E4 | \sum_{x\in X}x^{2n}w_{x} < \infty |
|
sum((x)^(2*n)* w[x](<)*infinity, x in X) |
Sum[(x)^(2*n)* Subscript[w, x][<]*Infinity, {x, X}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.2.E8 | p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x) |
p[n + 1](x) = (((k[n + 1])/(k[n]))*x + B[n])*p[n](x)- C[n]*p[n - 1](x) |
Subscript[p, n + 1][x] == ((Divide[Subscript[k, n + 1],Subscript[k, n]])*x + Subscript[B, n])*Subscript[p, n][x]- Subscript[C, n]*Subscript[p, n - 1][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |