Hypergeometric Function - 16.2 Definition and Analytic Properties

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
16.2.E3 F q p + 1 ⁑ ( - m , 𝐚 𝐛 ; z ) = ( 𝐚 ) m ⁒ ( - z ) m ( 𝐛 ) m ⁒ F p q + 1 ⁑ ( - m , 1 - m - 𝐛 1 - m - 𝐚 ; ( - 1 ) p + q z ) Gauss-hypergeometric-pFq 𝑝 1 π‘ž π‘š 𝐚 𝐛 𝑧 Pochhammer 𝐚 π‘š superscript 𝑧 π‘š Pochhammer 𝐛 π‘š Gauss-hypergeometric-pFq π‘ž 1 𝑝 π‘š 1 π‘š 𝐛 1 π‘š 𝐚 superscript 1 𝑝 π‘ž 𝑧 {\displaystyle{\displaystyle{{}_{p+1}F_{q}}\left({-m,\mathbf{a}\atop\mathbf{b}% };z\right)=\frac{{\left(\mathbf{a}\right)_{m}}(-z)^{m}}{{\left(\mathbf{b}% \right)_{m}}}{{}_{q+1}F_{p}}\left({-m,1-m-\mathbf{b}\atop 1-m-\mathbf{a}};% \frac{(-1)^{p+q}}{z}\right)}}
\genhyperF{p+1}{q}@@{-m,\mathbf{a}}{\mathbf{b}}{z} = \frac{\Pochhammersym{\mathbf{a}}{m}(-z)^{m}}{\Pochhammersym{\mathbf{b}}{m}}\genhyperF{q+1}{p}@@{-m,1-m-\mathbf{b}}{1-m-\mathbf{a}}{\frac{(-1)^{p+q}}{z}}

hypergeom([- m , a], [b], z) = (pochhammer(a, m)*(- z)^(m))/(pochhammer(b, m))*hypergeom([- m , 1 - m - b], [1 - m - a], ((- 1)^(p + q))/(z))
HypergeometricPFQ[{- m , a}, {b}, z] == Divide[Pochhammer[a, m]*(- z)^(m),Pochhammer[b, m]]*HypergeometricPFQ[{- m , 1 - m - b}, {1 - m - a}, Divide[(- 1)^(p + q),z]]
Failure Failure
Failed [258 / 300]
Result: .9712138727+.322304453e-1*I
Test Values: {a = -3/2, b = -3/2, p = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -.6497511671-1.025183062*I
Test Values: {a = -3/2, b = -3/2, p = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [258 / 300]
Result: Complex[0.9712138727144691, 0.032230445352325054]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6497511667213578, -1.0251830622105054]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
16.2.E4 βˆ‘ k = 0 m ( 𝐚 ) k ( 𝐛 ) k ⁒ z k k ! = ( 𝐚 ) m ⁒ z m ( 𝐛 ) m ⁒ m ! ⁒ F p q + 2 ⁑ ( - m , 1 , 1 - m - 𝐛 1 - m - 𝐚 ; ( - 1 ) p + q + 1 z ) superscript subscript π‘˜ 0 π‘š Pochhammer 𝐚 π‘˜ Pochhammer 𝐛 π‘˜ superscript 𝑧 π‘˜ π‘˜ Pochhammer 𝐚 π‘š superscript 𝑧 π‘š Pochhammer 𝐛 π‘š π‘š Gauss-hypergeometric-pFq π‘ž 2 𝑝 π‘š 1 1 π‘š 𝐛 1 π‘š 𝐚 superscript 1 𝑝 π‘ž 1 𝑧 {\displaystyle{\displaystyle\sum_{k=0}^{m}\frac{{\left(\mathbf{a}\right)_{k}}}% {{\left(\mathbf{b}\right)_{k}}}\frac{z^{k}}{k!}=\frac{{\left(\mathbf{a}\right)% _{m}}z^{m}}{{\left(\mathbf{b}\right)_{m}}m!}{{}_{q+2}F_{p}}\left({-m,1,1-m-% \mathbf{b}\atop 1-m-\mathbf{a}};\frac{(-1)^{p+q+1}}{z}\right)}}
\sum_{k=0}^{m}\frac{\Pochhammersym{\mathbf{a}}{k}}{\Pochhammersym{\mathbf{b}}{k}}\frac{z^{k}}{k!} = \frac{\Pochhammersym{\mathbf{a}}{m}z^{m}}{\Pochhammersym{\mathbf{b}}{m}m!}\genhyperF{q+2}{p}@@{-m,1,1-m-\mathbf{b}}{1-m-\mathbf{a}}{\frac{(-1)^{p+q+1}}{z}}

sum((pochhammer(a, k))/(pochhammer(b, k))*((z)^(k))/(factorial(k)), k = 0..m) = (pochhammer(a, m)*(z)^(m))/(pochhammer(b, m)*factorial(m))*hypergeom([- m , 1 , 1 - m - b], [1 - m - a], ((- 1)^(p + q + 1))/(z))
Sum[Divide[Pochhammer[a, k],Pochhammer[b, k]]*Divide[(z)^(k),(k)!], {k, 0, m}, GenerateConditions->None] == Divide[Pochhammer[a, m]*(z)^(m),Pochhammer[b, m]*(m)!]*HypergeometricPFQ[{- m , 1 , 1 - m - b}, {1 - m - a}, Divide[(- 1)^(p + q + 1),z]]
Failure Failure
Failed [258 / 300]
Result: .9712138726+.322304451e-1*I
Test Values: {a = -3/2, b = -3/2, p = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 1.825190824+.5153748995*I
Test Values: {a = -3/2, b = -3/2, p = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [258 / 300]
Result: Complex[0.9712138727144698, 0.03223044535232533]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8251908240859445, 0.5153749002123968]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data