Hypergeometric Function - 15.9 Relations to Other Functions
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
15.9.E1 | \JacobipolyP{\alpha}{\beta}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}\hyperF@@{-n}{n+\alpha+\beta+1}{\alpha+1}{\frac{1-x}{2}} |
|
JacobiP(n, alpha, beta, x) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n, n + alpha + beta + 1], [alpha + 1], (1 - x)/(2))
|
JacobiP[n, \[Alpha], \[Beta], x] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*Hypergeometric2F1[- n, n + \[Alpha]+ \[Beta]+ 1, \[Alpha]+ 1, Divide[1 - x,2]]
|
Successful | Successful | - | Successful [Tested: 81] |
15.9.E2 | \ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{n!}\hyperF@@{-n}{n+2\lambda}{\lambda+\frac{1}{2}}{\frac{1-x}{2}} |
|
GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(factorial(n))*hypergeom([- n, n + 2*lambda], [lambda +(1)/(2)], (1 - x)/(2))
|
GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],(n)!]*Hypergeometric2F1[- n, n + 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - x,2]]
|
Successful | Successful | - | Failed [15 / 90]
Result: 0.375
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[λ, -1.5]}
Result: 0.4375
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[λ, -1.5]}
... skip entries to safe data |
15.9.E3 | \ultrasphpoly{\lambda}{n}@{x} = (2x)^{n}\frac{\Pochhammersym{\lambda}{n}}{n!}\hyperF@@{-\frac{1}{2}n}{\frac{1}{2}(1-n)}{1-\lambda-n}{\frac{1}{x^{2}}} |
|
GegenbauerC(n, lambda, x) = (2*x)^(n)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([-(1)/(2)*n, (1)/(2)*(1 - n)], [1 - lambda - n], (1)/((x)^(2)))
|
GegenbauerC[n, \[Lambda], x] == (2*x)^(n)*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[-Divide[1,2]*n, Divide[1,2]*(1 - n), 1 - \[Lambda]- n, Divide[1,(x)^(2)]]
|
Failure | Failure | Failed [3 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, x = 3/2, n = 3}
Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, x = 1/2, n = 3}
... skip entries to safe data |
Failed [3 / 90]
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[λ, -2]}
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 0.5], Rule[λ, -2]}
... skip entries to safe data |
15.9.E4 | \ultrasphpoly{\lambda}{n}@{\cos@@{\theta}} = e^{n\iunit\theta}\frac{\Pochhammersym{\lambda}{n}}{n!}\hyperF@@{-n}{\lambda}{1-\lambda-n}{e^{-2\iunit\theta}} |
|
GegenbauerC(n, lambda, cos(theta)) = exp(n*I*theta)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n, lambda], [1 - lambda - n], exp(- 2*I*theta))
|
GegenbauerC[n, \[Lambda], Cos[\[Theta]]] == Exp[n*I*\[Theta]]*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[- n, \[Lambda], 1 - \[Lambda]- n, Exp[- 2*I*\[Theta]]]
|
Failure | Failure | Failed [10 / 300] Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, theta = 1/2*3^(1/2)+1/2*I, n = 3}
Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, theta = -1/2+1/2*I*3^(1/2), n = 3}
... skip entries to safe data |
Failed [10 / 300]
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, -2]}
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Rule[λ, -2]}
... skip entries to safe data |
15.9.E5 | \ChebyshevpolyT{n}@{x} = \hyperF@@{-n}{n}{\frac{1}{2}}{\frac{1-x}{2}} |
|
ChebyshevT(n, x) = hypergeom([- n, n], [(1)/(2)], (1 - x)/(2))
|
ChebyshevT[n, x] == Hypergeometric2F1[- n, n, Divide[1,2], Divide[1 - x,2]]
|
Successful | Successful | - | Successful [Tested: 9] |
15.9.E6 | \ChebyshevpolyU{n}@{x} = (n+1)\hyperF@@{-n}{n+2}{\frac{3}{2}}{\frac{1-x}{2}} |
|
ChebyshevU(n, x) = (n + 1)*hypergeom([- n, n + 2], [(3)/(2)], (1 - x)/(2))
|
ChebyshevU[n, x] == (n + 1)*Hypergeometric2F1[- n, n + 2, Divide[3,2], Divide[1 - x,2]]
|
Successful | Failure | - | Successful [Tested: 9] |
15.9.E7 | \LegendrepolyP{n}@{x} = \hyperF@@{-n}{n+1}{1}{\frac{1-x}{2}} |
|
LegendreP(n, x) = hypergeom([- n, n + 1], [1], (1 - x)/(2))
|
LegendreP[n, x] == Hypergeometric2F1[- n, n + 1, 1, Divide[1 - x,2]]
|
Successful | Successful | - | Successful [Tested: 9] |
15.9.E11 | \Jacobiphi{\alpha}{\beta}{\lambda}@{t} = \hyperF@@{\tfrac{1}{2}(\alpha+\beta+1-\iunit\lambda)}{\tfrac{1}{2}(\alpha+\beta+1+\iunit\lambda)}{\alpha+1}{-\sinh^{2}@@{t}} |
|
hypergeom([((alpha)+(beta)+1-I*(lambda))/2, ((alpha)+(beta)+1+I*(lambda))], [(alpha)+1], -sinh(t)^2) = hypergeom([(1)/(2)*(alpha + beta + 1 - I*lambda), (1)/(2)*(alpha + beta + 1 + I*lambda)], [alpha + 1], - (sinh(t))^(2))
|
Error
|
Failure | Missing Macro Error | Failed [288 / 300] Result: -.4877482336e-1+.1329197787e-1*I
Test Values: {alpha = 3/2, beta = 3/2, lambda = 1/2*3^(1/2)+1/2*I, t = -3/2}
Result: -.4877482336e-1+.1329197787e-1*I
Test Values: {alpha = 3/2, beta = 3/2, lambda = 1/2*3^(1/2)+1/2*I, t = 3/2}
... skip entries to safe data |
- |
15.9.E15 | \ultrasphpoly{\lambda}{\alpha}@{z} = \frac{\EulerGamma@{\alpha+2\lambda}}{\EulerGamma@{2\lambda}\EulerGamma@{\alpha+1}}\hyperF@@{-\alpha}{\alpha+2\lambda}{\lambda+\tfrac{1}{2}}{\frac{1-z}{2}} |
GegenbauerC(alpha, lambda, z) = (GAMMA(alpha + 2*lambda))/(GAMMA(2*lambda)*GAMMA(alpha + 1))*hypergeom([- alpha, alpha + 2*lambda], [lambda +(1)/(2)], (1 - z)/(2))
|
GegenbauerC[\[Alpha], \[Lambda], z] == Divide[Gamma[\[Alpha]+ 2*\[Lambda]],Gamma[2*\[Lambda]]*Gamma[\[Alpha]+ 1]]*Hypergeometric2F1[- \[Alpha], \[Alpha]+ 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - z,2]]
|
Successful | Successful | - | Successful [Tested: 105] | |
15.9.E16 | \hyperOlverF@@{a}{b}{2b}{z} = \frac{\sqrt{\pi}}{\EulerGamma@{b}}z^{-b+(\ifrac{1}{2})}(1-z)^{(b-a-(\ifrac{1}{2}))/2}\*\assLegendreP[-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\frac{2-z}{2\sqrt{1-z}}} |
hypergeom([a, b], [2*b], z)/GAMMA(2*b) = (sqrt(Pi))/(GAMMA(b))*(z)^(- b +((1)/(2)))*(1 - z)^((b - a -((1)/(2)))/2)* LegendreP(a - b -((1)/(2)), - b +((1)/(2)), (2 - z)/(2*sqrt(1 - z)))
|
Hypergeometric2F1Regularized[a, b, 2*b, z] == Divide[Sqrt[Pi],Gamma[b]]*(z)^(- b +(Divide[1,2]))*(1 - z)^((b - a -(Divide[1,2]))/2)* LegendreP[a - b -(Divide[1,2]), - b +(Divide[1,2]), 3, Divide[2 - z,2*Sqrt[1 - z]]]
|
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 18] | |
15.9.E17 | \hyperOlverF@@{a}{a+\tfrac{1}{2}}{c}{z} = 2^{c-1}z^{\ifrac{(1-c)}{2}}(1-z)^{-a+(\ifrac{(c-1)}{2})}\*\assLegendreP[1-c]{2a-c}@{\frac{1}{\sqrt{1-z}}} |
hypergeom([a, a +(1)/(2)], [c], z)/GAMMA(c) = (2)^(c - 1)* (z)^((1 - c)/(2))*(1 - z)^(- a +((c - 1)/(2)))* LegendreP(2*a - c, 1 - c, (1)/(sqrt(1 - z)))
|
Hypergeometric2F1Regularized[a, a +Divide[1,2], c, z] == (2)^(c - 1)* (z)^(Divide[1 - c,2])*(1 - z)^(- a +(Divide[c - 1,2]))* LegendreP[2*a - c, 1 - c, 3, Divide[1,Sqrt[1 - z]]]
|
Failure | Failure | Error | Successful [Tested: 180] | |
15.9.E18 | \hyperOlverF@@{a}{b}{a+b+\tfrac{1}{2}}{z} = 2^{a+b-(\ifrac{1}{2})}(-z)^{(-a-b+(\ifrac{1}{2}))/2}\*\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{1-z}} |
hypergeom([a, b], [a + b +(1)/(2)], z)/GAMMA(a + b +(1)/(2)) = (2)^(a + b -((1)/(2)))*(- z)^((- a - b +((1)/(2)))/2)* LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(1 - z))
|
Hypergeometric2F1Regularized[a, b, a + b +Divide[1,2], z] == (2)^(a + b -(Divide[1,2]))*(- z)^((- a - b +(Divide[1,2]))/2)* LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[1 - z]]
|
Failure | Failure | Error | Successful [Tested: 144] | |
15.9.E19 | \hyperOlverF@@{a}{b}{a-b+1}{z} = z^{\ifrac{(b-a)}{2}}(1-z)^{-b}\*\assLegendreP[b-a]{-b}@{\frac{1+z}{1-z}} |
hypergeom([a, b], [a - b + 1], z)/GAMMA(a - b + 1) = (z)^((b - a)/(2))*(1 - z)^(- b)* LegendreP(- b, b - a, (1 + z)/(1 - z))
|
Hypergeometric2F1Regularized[a, b, a - b + 1, z] == (z)^(Divide[b - a,2])*(1 - z)^(- b)* LegendreP[- b, b - a, 3, Divide[1 + z,1 - z]]
|
Successful | Failure | - | Successful [Tested: 180] | |
15.9.E20 | \hyperOlverF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \left(-z(1-z)\right)^{\ifrac{(1-a-b)}{4}}\*\assLegendreP[\ifrac{(1-a-b)}{2}]{\ifrac{(a-b-1)}{2}}@{1-2z} |
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)/GAMMA((1)/(2)*(a + b + 1)) = (- z*(1 - z))^((1 - a - b)/(4))* LegendreP((a - b - 1)/(2), (1 - a - b)/(2), 1 - 2*z)
|
Hypergeometric2F1Regularized[a, b, Divide[1,2]*(a + b + 1), z] == (- z*(1 - z))^(Divide[1 - a - b,4])* LegendreP[Divide[a - b - 1,2], Divide[1 - a - b,2], 3, 1 - 2*z]
|
Failure | Failure | Error | Successful [Tested: 144] | |
15.9.E21 | \hyperOlverF@@{a}{1-a}{c}{z} = \left(\frac{-z}{1-z}\right)^{\ifrac{(1-c)}{2}}\*\assLegendreP[1-c]{-a}@{1-2z} |
hypergeom([a, 1 - a], [c], z)/GAMMA(c) = ((- z)/(1 - z))^((1 - c)/(2))* LegendreP(- a, 1 - c, 1 - 2*z)
|
Hypergeometric2F1Regularized[a, 1 - a, c, z] == (Divide[- z,1 - z])^(Divide[1 - c,2])* LegendreP[- a, 1 - c, 3, 1 - 2*z]
|
Failure | Successful | Error | - | |
15.9.E22 | \hyperOlverF@@{a}{b}{\tfrac{1}{2}}{z} = \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{+\pi\iunit(a+b-(\ifrac{1}{2}))}\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}+\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right) |
hypergeom([a, b], [(1)/(2)], z)/GAMMA((1)/(2)) = ((2)^(a + b -((3)/(2))))/(Pi)*GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2))*(z - 1)^((- a - b +((1)/(2)))/2)*(exp(+ Pi*I*(a + b -((1)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), -sqrt(z))+ LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(z)))
|
Hypergeometric2F1Regularized[a, b, Divide[1,2], z] == Divide[(2)^(a + b -(Divide[3,2])),Pi]*Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]*(z - 1)^((- a - b +(Divide[1,2]))/2)*(Exp[+ Pi*I*(a + b -(Divide[1,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, -Sqrt[z]]+ LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[z]])
|
Failure | Failure | Error | Failed [10 / 36]
Result: Complex[-0.8582540688970105, -2.787267603366778]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}
Result: Complex[-0.09762832897349609, -0.474497895465574]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}
... skip entries to safe data | |
15.9.E22 | \hyperOlverF@@{a}{b}{\tfrac{1}{2}}{z} = \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{-\pi\iunit(a+b-(\ifrac{1}{2}))}\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}+\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right) |
hypergeom([a, b], [(1)/(2)], z)/GAMMA((1)/(2)) = ((2)^(a + b -((3)/(2))))/(Pi)*GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2))*(z - 1)^((- a - b +((1)/(2)))/2)*(exp(- Pi*I*(a + b -((1)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), -sqrt(z))+ LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(z)))
|
Hypergeometric2F1Regularized[a, b, Divide[1,2], z] == Divide[(2)^(a + b -(Divide[3,2])),Pi]*Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]*(z - 1)^((- a - b +(Divide[1,2]))/2)*(Exp[- Pi*I*(a + b -(Divide[1,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, -Sqrt[z]]+ LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[z]])
|
Failure | Failure | Error | Failed [10 / 36]
Result: Complex[1.7877768256534143, 6.989426464541403]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.26682868759795453, 0.7163138167399228]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
15.9.E23 | \hyperOlverF@@{a}{b}{\tfrac{3}{2}}{z} = \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{+\pi\iunit(a+b-(\ifrac{3}{2}))}\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}-\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right) |
hypergeom([a, b], [(3)/(2)], z)/GAMMA((3)/(2)) = ((2)^(a + b -((5)/(2))))/(Pi*sqrt(z))*GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2))*(z - 1)^((- a - b +((3)/(2)))/2)*(exp(+ Pi*I*(a + b -((3)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), -sqrt(z))- LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), sqrt(z)))
|
Hypergeometric2F1Regularized[a, b, Divide[3,2], z] == Divide[(2)^(a + b -(Divide[5,2])),Pi*Sqrt[z]]*Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]*(z - 1)^((- a - b +(Divide[3,2]))/2)*(Exp[+ Pi*I*(a + b -(Divide[3,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, -Sqrt[z]]- LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, Sqrt[z]])
|
Failure | Failure | Error | Failed [4 / 16]
Result: Complex[2.2779820596001903, -1.628954540775632]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}
Result: Complex[0.907830443893564, 0.19750251034857133]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}
... skip entries to safe data | |
15.9.E23 | \hyperOlverF@@{a}{b}{\tfrac{3}{2}}{z} = \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{-\pi\iunit(a+b-(\ifrac{3}{2}))}\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}-\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right) |
hypergeom([a, b], [(3)/(2)], z)/GAMMA((3)/(2)) = ((2)^(a + b -((5)/(2))))/(Pi*sqrt(z))*GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2))*(z - 1)^((- a - b +((3)/(2)))/2)*(exp(- Pi*I*(a + b -((3)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), -sqrt(z))- LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), sqrt(z)))
|
Hypergeometric2F1Regularized[a, b, Divide[3,2], z] == Divide[(2)^(a + b -(Divide[5,2])),Pi*Sqrt[z]]*Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]*(z - 1)^((- a - b +(Divide[3,2]))/2)*(Exp[- Pi*I*(a + b -(Divide[3,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, -Sqrt[z]]- LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, Sqrt[z]])
|
Failure | Failure | Error | Failed [4 / 16]
Result: Complex[4.158519870861856, 2.5132294016879406]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.2196744558627868, 0.17160454696174166]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |