Hypergeometric Function - 15.15 Sums

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.15.E1 𝐅 ⁑ ( a , b c ; 1 z ) = ( 1 - z 0 z ) - a ⁒ βˆ‘ s = 0 ∞ ( a ) s s ! ⁒ 𝐅 ⁑ ( - s , b c ; 1 z 0 ) ⁒ ( 1 - z z 0 ) - s scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 1 𝑧 superscript 1 subscript 𝑧 0 𝑧 π‘Ž superscript subscript 𝑠 0 subscript π‘Ž 𝑠 𝑠 scaled-hypergeometric-bold-F 𝑠 𝑏 𝑐 1 subscript 𝑧 0 superscript 1 𝑧 subscript 𝑧 0 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};\frac{1}{z}\right)=% \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*% \mathbf{F}\left({-s,b\atop c};\frac{1}{z_{0}}\right)\left(1-\frac{z}{z_{0}}% \right)^{-s}}}
\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}

hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)
Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out