Hypergeometric Function - 15.14 Integrals

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.14.E1 ∫ 0 ∞ x s - 1 ⁒ 𝐅 ⁑ ( a , b c ; - x ) ⁒ d x = Ξ“ ⁑ ( s ) ⁒ Ξ“ ⁑ ( a - s ) ⁒ Ξ“ ⁑ ( b - s ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - s ) superscript subscript 0 superscript π‘₯ 𝑠 1 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ π‘₯ Euler-Gamma 𝑠 Euler-Gamma π‘Ž 𝑠 Euler-Gamma 𝑏 𝑠 Euler-Gamma π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑠 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{s-1}\mathbf{F}\left({a,b\atop c% };-x\right)\mathrm{d}x=\frac{\Gamma\left(s\right)\Gamma\left(a-s\right)\Gamma% \left(b-s\right)}{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(c-s% \right)}}}
\int_{0}^{\infty}x^{s-1}\hyperOlverF@@{a}{b}{c}{-x}\diff{x} = \frac{\EulerGamma@{s}\EulerGamma@{a-s}\EulerGamma@{b-s}}{\EulerGamma@{a}\EulerGamma@{b}\EulerGamma@{c-s}}
min ⁑ ( β„œ ⁑ a > β„œ ⁑ s , β„œ ⁑ b ) > β„œ ⁑ s , β„œ ⁑ s > 0 , β„œ ⁑ ( a - s ) > 0 , β„œ ⁑ ( b - s ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , β„œ ⁑ ( c - s ) > 0 , | ( - x ) | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence π‘Ž 𝑠 𝑏 𝑠 formulae-sequence 𝑠 0 formulae-sequence π‘Ž 𝑠 0 formulae-sequence 𝑏 𝑠 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence 𝑐 𝑠 0 formulae-sequence π‘₯ 1 𝑐 𝑠 0 {\displaystyle{\displaystyle\min(\Re a>\Re s,\Re b)>\Re s,\Re s>0,\Re(a-s)>0,% \Re(b-s)>0,\Re a>0,\Re b>0,\Re(c-s)>0,|(-x)|<1,\Re(c+s)>0}}
int((x)^(s - 1)* hypergeom([a, b], [c], - x)/GAMMA(c), x = 0..infinity) = (GAMMA(s)*GAMMA(a - s)*GAMMA(b - s))/(GAMMA(a)*GAMMA(b)*GAMMA(c - s))
Integrate[(x)^(s - 1)* Hypergeometric2F1Regularized[a, b, c, - x], {x, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[s]*Gamma[a - s]*Gamma[b - s],Gamma[a]*Gamma[b]*Gamma[c - s]]
Successful Aborted - Skipped - Because timed out