Legendre and Related Functions - 14.14 Continued Fractions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
14.14#Ex1 x k = 1 4 ( ν - μ - k + 1 ) ( ν + μ + k ) ( x 2 - 1 ) subscript 𝑥 𝑘 1 4 𝜈 𝜇 𝑘 1 𝜈 𝜇 𝑘 superscript 𝑥 2 1 {\displaystyle{\displaystyle x_{k}=\tfrac{1}{4}(\nu-\mu-k+1)(\nu+\mu+k)\left(x% ^{2}-1\right)}}
x_{k} = \tfrac{1}{4}(\nu-\mu-k+1)(\nu+\mu+k)\left(x^{2}-1\right)

x[k] = (1)/(4)*(nu - mu - k + 1)*(nu + mu + k)*((x)^(2)- 1)
Subscript[x, k] == Divide[1,4]*(\[Nu]- \[Mu]- k + 1)*(\[Nu]+ \[Mu]+ k)*((x)^(2)- 1)
Skipped - no semantic math Skipped - no semantic math - -
14.14#Ex2 y k = ( μ + k ) x subscript 𝑦 𝑘 𝜇 𝑘 𝑥 {\displaystyle{\displaystyle y_{k}=(\mu+k)x}}
y_{k} = (\mu+k)x

y[k] = (mu + k)*x
Subscript[y, k] == (\[Mu]+ k)*x
Skipped - no semantic math Skipped - no semantic math - -
14.14#Ex3 x k = ( ν + μ + k ) ( ν - μ + k ) subscript 𝑥 𝑘 𝜈 𝜇 𝑘 𝜈 𝜇 𝑘 {\displaystyle{\displaystyle x_{k}=(\nu+\mu+k)(\nu-\mu+k)}}
x_{k} = (\nu+\mu+k)(\nu-\mu+k)

x[k] = (nu + mu + k)*(nu - mu + k)
Subscript[x, k] == (\[Nu]+ \[Mu]+ k)*(\[Nu]- \[Mu]+ k)
Skipped - no semantic math Skipped - no semantic math - -
14.14#Ex4 y k = ( 2 ν + 2 k + 1 ) x subscript 𝑦 𝑘 2 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle y_{k}=(2\nu+2k+1)x}}
y_{k} = (2\nu+2k+1)x

y[k] = (2*nu + 2*k + 1)*x
Subscript[y, k] == (2*\[Nu]+ 2*k + 1)*x
Skipped - no semantic math Skipped - no semantic math - -