Confluent Hypergeometric Functions - 13.25 Products

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.25.E1 M κ , μ ( z ) M κ , - μ - 1 ( z ) + ( 1 2 + μ + κ ) ( 1 2 + μ - κ ) 4 μ ( 1 + μ ) ( 1 + 2 μ ) 2 M κ , μ + 1 ( z ) M κ , - μ ( z ) = 1 Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 Whittaker-confluent-hypergeometric-M 𝜅 𝜇 1 𝑧 1 2 𝜇 𝜅 1 2 𝜇 𝜅 4 𝜇 1 𝜇 superscript 1 2 𝜇 2 Whittaker-confluent-hypergeometric-M 𝜅 𝜇 1 𝑧 Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 1 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)M_{\kappa,-\mu-1}% \left(z\right)+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+% \mu)(1+2\mu)^{2}}M_{\kappa,\mu+1}\left(z\right)M_{\kappa,-\mu}\left(z\right)=1}}
\WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1

WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z) = 1
WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z] == 1
Failure Failure
Failed [168 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [162 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]}

... skip entries to safe data