Parabolic Cylinder Functions - 12.11 Zeros

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.11.E5 p 0 ( ζ ) = t ( ζ ) subscript 𝑝 0 𝜁 𝑡 𝜁 {\displaystyle{\displaystyle p_{0}(\zeta)=t(\zeta)}}
p_{0}(\zeta) = t(\zeta)

p[0](zeta) = t(zeta)
Subscript[p, 0][\[Zeta]] == t[\[Zeta]]
Skipped - no semantic math Skipped - no semantic math - -
12.11.E6 p 1 ( ζ ) = t 3 - 6 t 24 ( t 2 - 1 ) 2 + 5 48 ( ( t 2 - 1 ) ζ 3 ) 1 2 subscript 𝑝 1 𝜁 superscript 𝑡 3 6 𝑡 24 superscript superscript 𝑡 2 1 2 5 48 superscript superscript 𝑡 2 1 superscript 𝜁 3 1 2 {\displaystyle{\displaystyle p_{1}(\zeta)=\frac{t^{3}-6t}{24(t^{2}-1)^{2}}+% \frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}}}
p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}

p[1](zeta) = ((t)^(3)- 6*t)/(24*((t)^(2)- 1)^(2))+(5)/(48*(((t)^(2)- 1)*(zeta)^(3))^((1)/(2)))
Subscript[p, 1][\[Zeta]] == Divide[(t)^(3)- 6*t,24*((t)^(2)- 1)^(2)]+Divide[5,48*(((t)^(2)- 1)*\[Zeta]^(3))^(Divide[1,2])]
Skipped - no semantic math Skipped - no semantic math - -
12.11.E8 q 0 ( ζ ) = t ( ζ ) subscript 𝑞 0 𝜁 𝑡 𝜁 {\displaystyle{\displaystyle q_{0}(\zeta)=t(\zeta)}}
q_{0}(\zeta) = t(\zeta)

q[0](zeta) = t(zeta)
Subscript[q, 0][\[Zeta]] == t[\[Zeta]]
Skipped - no semantic math Skipped - no semantic math - -