Bessel Functions - 10.68 Modulus and Phase Functions
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.68#Ex5 | \HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}} |
Error
|
Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2))^(Divide[1,2])
|
Missing Macro Error | Successful | - | Successful [Tested: 30] | |
10.68#Ex6 | \HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}} |
|
Error
|
Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((KelvinKer[\[Nu], x])^(2)+ (KelvinKei[\[Nu], x])^(2))^(Divide[1,2])
|
Missing Macro Error | Successful | - | Successful [Tested: 30] |
10.68#Ex9 | \HankelmodM{-n}@{x} = \HankelmodM{n}@{x} |
|
Error
|
Sqrt[KelvinBer[- n, x]^2 + KelvinBei[- n, x]^2] == Sqrt[KelvinBer[n, x]^2 + KelvinBei[n, x]^2]
|
Missing Macro Error | Failure | - | Successful [Tested: 9] |
10.68#Ex17 | \HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x} |
|
Error
|
Sqrt[KelvinKer[- \[Nu], x]^2 + KelvinKei[- \[Nu], x]^2] == Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2]
|
Missing Macro Error | Failure | - | Successful [Tested: 30] |