Bessel Functions - 10.28 Wronskians and Cross-Products

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.28.E1 𝒲 ⁑ { I Ξ½ ⁑ ( z ) , I - Ξ½ ⁑ ( z ) } = I Ξ½ ⁑ ( z ) ⁒ I - Ξ½ - 1 ⁑ ( z ) - I Ξ½ + 1 ⁑ ( z ) ⁒ I - Ξ½ ⁑ ( z ) Wronskian modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{I_{\nu}\left(z\right),I_{-\nu}% \left(z\right)\right\}=I_{\nu}\left(z\right)I_{-\nu-1}\left(z\right)-I_{\nu+1}% \left(z\right)I_{-\nu}\left(z\right)}}
\Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ - 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-\nu-1)+k+1)% >0,\Re((\nu+1)+k+1)>0}}
(BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z)
Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E1 I Ξ½ ⁑ ( z ) ⁒ I - Ξ½ - 1 ⁑ ( z ) - I Ξ½ + 1 ⁑ ( z ) ⁒ I - Ξ½ ⁑ ( z ) = - 2 ⁒ sin ⁑ ( Ξ½ ⁒ Ο€ ) / ( Ο€ ⁒ z ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 𝜈 πœ‹ πœ‹ 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)I_{-\nu-1}\left(z\right)-I_{% \nu+1}\left(z\right)I_{-\nu}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}
\modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ - 1 ) + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 π‘˜ 1 0 formulae-sequence 𝜈 1 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-\nu-1)+k+1)% >0,\Re((\nu+1)+k+1)>0}}
BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.28.E2 𝒲 ⁑ { K Ξ½ ⁑ ( z ) , I Ξ½ ⁑ ( z ) } = I Ξ½ ⁑ ( z ) ⁒ K Ξ½ + 1 ⁑ ( z ) + I Ξ½ + 1 ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) Wronskian modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{K_{\nu}\left(z\right),I_{\nu}% \left(z\right)\right\}=I_{\nu}\left(z\right)K_{\nu+1}\left(z\right)+I_{\nu+1}% \left(z\right)K_{\nu}\left(z\right)}}
\Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z)
Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E2 I Ξ½ ⁑ ( z ) ⁒ K Ξ½ + 1 ⁑ ( z ) + I Ξ½ + 1 ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) = 1 / z modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 1 𝑧 modified-Bessel-first-kind 𝜈 1 𝑧 modified-Bessel-second-kind 𝜈 𝑧 1 𝑧 {\displaystyle{\displaystyle I_{\nu}\left(z\right)K_{\nu+1}\left(z\right)+I_{% \nu+1}\left(z\right)K_{\nu}\left(z\right)=1/z}}
\modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z
β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( Ξ½ + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 1 π‘˜ 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/z
BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/z
Failure Successful Successful [Tested: 70] Successful [Tested: 70]